

django-directed

[image: PyPI] [https://pypi.org/project/django-directed/]
[image: Status] [https://pypi.org/project/django-directed/]
[image: Python Version] [https://pypi.org/project/django-directed/]
[image: License]

[image: Read the documentation at https://django-directed.readthedocs.io/]
[image: Tests] [https://github.com/jacklinke/django-directed/actions?workflow=Tests]
[image: Codecov] [https://app.codecov.io/gh/jacklinke/django-directed]

[image: pre-commit] [https://github.com/pre-commit/pre-commit]
[image: Black] [https://github.com/psf/black]

Tools for building, querying, manipulating, and exporting directed graphs [https://en.wikipedia.org/wiki/Directed_graph] with django.

Documentation can be found at https://django-directed.readthedocs.io/en/latest/

Caution

This project is very much a Work In Progress, and is not production-ready.
Once it is in a more complete state, it will be moved to the github Watervize
organization for long-term development and maintenance.

Fundamentals

Graphs in django-directed are constructed with three models (or potentially more in case of extended features).

	Graph: Represents a connected graph of nodes and edges. It makes it easy to associate metadata with a particular graph and to run commands and queries limited to a subset of all the Edges and Nodes in the database.

	Edge: Connects Nodes to one another within a particular Graph instance.

	Node: A node can belong to more than one Graph. This allows us to represent multi-dimensional or multi-layered graphs.

django-directed includes model factories for building various types of directed graphs. As an example, imagine a project in which you display family trees and also provide a searchable interface for research papers about family trees, where papers can be linked to previous papers that they cite. Both of these concepts can be represented by a Directed Acyclic Graph (DAG) [https://en.wikipedia.org/wiki/Directed_acyclic_graph], and within your project you could create a set of DAG models for the family tree app and another set of DAG models for the academic papers app.

Quickstart

Assuming you have already started a django project and an app named myapp

Install django-directed

pip install django-directed

Create the concrete models

Using the DAG factory, create a set of concrete Graph, Edge, and Node models for your project. Perform the following steps in your app’s models.py

Build a configuration object that will be passed into the factory. Here, we are using the simplest configuration which specifies the graph type (default options include ‘CYCLIC’, ‘DAG’, ‘POLYTREE’, ‘ARBORESCENCE’) and the model names (with appname.ModelName). We fall back to the default values for all other configuration options.

from django_directed.config import GraphConfig

my_config = GraphConfig(
 graph_type="DAG",
 graph_model_name="myapp.DAGGraph",
 edge_model_name="myapp.DAGEdge",
 node_model_name="myapp.DAGNode",
)

Create the concrete models from a model factory service. In this example, we are adding some fields as an example of what you might do in your own application.

from django.db import models
from django_directed.models.model_factory import factory

Create DAG factory instance
dag = factory.create(config=my_config)

Create concrete models
class DAGGraph(dag.graph()):
 metadata = models.JSONField(default=str, blank=True)

class DAGEdge(dag.edge()):
 name = models.CharField(max_length=101, blank=True)
 weight = models.SmallIntegerField(default=1)

 def save(self, *args, **kwargs):
 self.name = f"{self.parent.name} -to- {self.child.name}"
 super().save(*args, **kwargs)

class DAGNode(dag.node()):
 name = models.CharField(max_length=50)
 weight = models.SmallIntegerField(default=1)

Note

The model names here (DAGGraph, etc) are for example only. You are welcome to use whatever names you like, but the model names should match the names provided in the configuration.

Migrations

As usual when working with models in django, we need to make migrations and then run them.

python manage.py makemigrations
python manage.py migrate

Build a couple graphs using our DAG models

Tip

We are using the graph_context_manager here, which is provided in django-directed for convenience. If you decide not to use this context manager, you need to provide the graph instance when creating or querying with Nodes and Edges.

from django_directed.context_managers import graph_scope

from myapp.models import DAGGraph, DAGEdge, DAGNode

Create a graph instance
first_graph = DAGGraph.objects.create()
Create a second graph instance, which will share nodes with first_graph
another_graph = DAGGraph.objects.create()

with graph_scope(first_graph):

 # Create several nodes (not yet connected)
 root = DAGNode.objects.create(name="root")

 a1 = DAGNode.objects.create(name="a1")
 a2 = DAGNode.objects.create(name="a2")
 a3 = DAGNode.objects.create(name="a3")

 b1 = DAGNode.objects.create(name="b1")
 b2 = DAGNode.objects.create(name="b2")
 b3 = DAGNode.objects.create(name="b3")
 b4 = DAGNode.objects.create(name="b4")

 c1 = DAGNode.objects.create(name="c1")
 c2 = DAGNode.objects.create(name="c2")

 # Connect nodes with edges
 root.add_child(a1)
 root.add_child(a2)

 # You can add from either side of the relationship
 a3.add_parent(root)

 b1.add_parent(a1)
 a1.add_child(b2)
 a2.add_child(b2)
 a3.add_child(b3)
 a3.add_child(b4)

 b3.add_child(c2)
 b3.add_child(c1)
 b4.add_child(c2)

with graph_scope(another_graph):

 # Connect nodes with edges
 c1 = DAGNode.objects.get(name="c1")
 c2 = DAGNode.objects.get(name="c2")

 c1.add_child(c2)

User Guide

	django-directed Readme
	Fundamentals

	Quickstart

	Example apps

	Why not use a graph database instead?

	Installation
	Basic

	External packages and plugins

	Terminology & Definitions
	Node

	Edge

	Root

	Roots

	Leaf / Leaves

	Orphan

	Parent / Parents

	Child / Children

	Ancestors

	Descendants

	Clan

	Siblings

	Partners

	Distance

	Node Depth

	Concepts

	Building Graphs
	Configuration

	Models

	Querying Graphs

	Manipulating Graphs

	Exporting Graphs

API

	Graph
	Manager/QuerySet Methods

	Model Methods

	Node
	Manager/QuerySet Methods

	Model Methods

	Edge
	Manager/QuerySet Methods

	Model Methods

	Reference
	django_directed

	admin.py

	apps.py

	config.py

	context_managers.py

	fields.py

	forms.py

	manager_methods.py

	model_methods.py

	models/abstract_base_graph_models.py

	models/abstract_graph_models.py

	models/model_factory.py

	query_utils.py

	queryset_methods.py

	signals.py

	validators.py

	views.py

	urls.py

Advanced Usage

	Contributor Guide
	How to report a bug

	How to request a feature

	How to set up your development environment

	How to test the project

	How to submit changes

	Extending Functionality
	Custom model factories

	Pluggy Plugins

	Combined approach

	Plugin Hooks

	Signals

Project Details

	About django-directed
	Background

	Some design decisions

	Scope & Goals

	Types of Directed Graphs

	Example Use-Cases of django-directed

	Further reading and resources

	Project Roadmap
	Long-term Features

	Credits
	Development Lead

	Contributors

	Code of Conduct
	Our Pledge

	Our Standards

	Enforcement Responsibilities

	Scope

	Enforcement

	Enforcement Guidelines

	Attribution

	License

	Changelog [https://github.com/jacklinke/django-directed/releases]

View this project [https://github.com/jacklinke/django-directed] on Github.

django-directed

[image: PyPI] [https://pypi.org/project/django-directed/]
[image: Status] [https://pypi.org/project/django-directed/]
[image: Python Version] [https://pypi.org/project/django-directed/]
[[image: License]][license]

[image: Read the documentation at https://django-directed.readthedocs.io/]
[image: Tests] [https://github.com/jacklinke/django-directed/actions?workflow=Tests]
[image: Codecov] [https://app.codecov.io/gh/jacklinke/django-directed]

[image: pre-commit] [https://github.com/pre-commit/pre-commit]
[image: Black] [https://github.com/psf/black]

Tools for building, querying, manipulating, and exporting directed graphs [https://en.wikipedia.org/wiki/Directed_graph] with django.

Documentation can be found at https://django-directed.readthedocs.io/en/latest/

Caution

This project is very much a Work In Progress, and is not production-ready.
Once it is in a more complete state, it will be moved to the github Watervize
organization for long-term development and maintenance.

Fundamentals

Graphs in django-directed are constructed with three models (or potentially more in case of extended features).

	Graph: Represents a connected graph of nodes and edges. It makes it easy to associate metadata with a particular graph and to run commands and queries limited to a subset of all the Edges and Nodes in the database.

	Edge: Connects Nodes to one another within a particular Graph instance.

	Node: A node can belong to more than one Graph. This allows us to represent multi-dimensional or multi-layered graphs.

django-directed includes model factories for building various types of directed graphs. As an example, imagine a project in which you display family trees and also provide a searchable interface for research papers about family trees, where papers can be linked to previous papers that they cite. Both of these concepts can be represented by a Directed Acyclic Graph (DAG) [https://en.wikipedia.org/wiki/Directed_acyclic_graph], and within your project you could create a set of DAG models for the family tree app and another set of DAG models for the academic papers app.

Quickstart

Assuming you have already started a django project and an app named myapp

Install django-directed

pip install django-directed

Create the concrete models

Using the DAG factory, create a set of concrete Graph, Edge, and Node models for your project. Perform the following steps in your app’s models.py

Build a configuration object that will be passed into the factory. Here, we are using the simplest configuration which specifies the graph type (default options include ‘CYCLIC’, ‘DAG’, ‘POLYTREE’, ‘ARBORESCENCE’) and the model names (with appname.ModelName). We fall back to the default values for all other configuration options.

from django_directed.config import GraphConfig

my_config = GraphConfig(
 graph_type="DAG",
 graph_model_name="myapp.DAGGraph",
 edge_model_name="myapp.DAGEdge",
 node_model_name="myapp.DAGNode",
)

Create the concrete models from a model factory service. In this example, we are adding some fields as an example of what you might do in your own application.

from django.db import models
from django_directed.models.model_factory import factory

Create DAG factory instance
dag = factory.create(config=my_config)

Create concrete models
class DAGGraph(dag.graph()):
 metadata = models.JSONField(default=str, blank=True)

class DAGEdge(dag.edge()):
 name = models.CharField(max_length=101, blank=True)
 weight = models.SmallIntegerField(default=1)

 def save(self, *args, **kwargs):
 self.name = f"{self.parent.name} -to- {self.child.name}"
 super().save(*args, **kwargs)

class DAGNode(dag.node()):
 name = models.CharField(max_length=50)
 weight = models.SmallIntegerField(default=1)

Note

The model names here (DAGGraph, etc) are for example only. You are welcome to use whatever names you like, but the model names should match the names provided in the configuration.

Migrations

As usual when working with models in django, we need to make migrations and then run them.

python manage.py makemigrations
python manage.py migrate

Build a couple graphs using our DAG models

Tip

We are using the graph_context_manager here, which is provided in django-directed for convenience. If you decide not to use this context manager, you need to provide the graph instance when creating or querying with Nodes and Edges.

from django_directed.context_managers import graph_scope

from myapp.models import DAGGraph, DAGEdge, DAGNode

Create a graph instance
first_graph = DAGGraph.objects.create()
Create a second graph instance, which will share nodes with first_graph
another_graph = DAGGraph.objects.create()

with graph_scope(first_graph):

 # Create several nodes (not yet connected)
 root = DAGNode.objects.create(name="root")

 a1 = DAGNode.objects.create(name="a1")
 a2 = DAGNode.objects.create(name="a2")
 a3 = DAGNode.objects.create(name="a3")

 b1 = DAGNode.objects.create(name="b1")
 b2 = DAGNode.objects.create(name="b2")
 b3 = DAGNode.objects.create(name="b3")
 b4 = DAGNode.objects.create(name="b4")

 c1 = DAGNode.objects.create(name="c1")
 c2 = DAGNode.objects.create(name="c2")

 # Connect nodes with edges
 root.add_child(a1)
 root.add_child(a2)

 # You can add from either side of the relationship
 a3.add_parent(root)

 b1.add_parent(a1)
 a1.add_child(b2)
 a2.add_child(b2)
 a3.add_child(b3)
 a3.add_child(b4)

 b3.add_child(c2)
 b3.add_child(c1)
 b4.add_child(c2)

with graph_scope(another_graph):

 # Connect nodes with edges
 c1 = DAGNode.objects.get(name="c1")
 c2 = DAGNode.objects.get(name="c2")

 c1.add_child(c2)

Resulting model data

Here is the resulting data in each model (ignoring the custom fields added in the concrete model definitions).

myapp.DAGGraph

 id

 1
 2

myapp.DAGNode

 id | name | graph
-----+------+------
 1 | root | 1
 2 | a1 | 1
 3 | a2 | 1
 4 | a3 | 1
 5 | b1 | 1
 6 | b2 | 1
 7 | b3 | 1
 8 | b4 | 1
 9 | c1 | 1
 10 | c2 | 1

myapp.DAGEdge

id | parent_id | child_id | name | graph
----+-----------+----------+---------+------
 1 | 1 | 2 | root a1 | 1
 2 | 1 | 3 | root a2 | 1
 3 | 1 | 4 | root a3 | 1
 4 | 2 | 5 | a1 b1 | 1
 5 | 2 | 6 | a1 b2 | 1
 6 | 3 | 6 | a2 b2 | 1
 7 | 4 | 7 | a3 b3 | 1
 8 | 4 | 8 | a3 b4 | 1
 9 | 7 | 10 | b3 c2 | 1
 10 | 7 | 9 | b3 c1 | 1
 11 | 8 | 10 | b4 c2 | 1
 12 | 9 | 10 | c1 c2 | 2

Graph visualization

Note

In the visualized graph below, both of the green nodes (c1) refer to the same Node instance, which is associated with two different graph instances. Likewise, both blue nodes (c2) refer to the same Node instance.

Note

The mermaid.js diagrams require different markup for GitHub markdown compared to display within ReadTheDocs. Both versions are included here, but one will likely appear as code depending on where you are viewing this file.

Graph for display on GitHub

graph TD;
 root((root));
 a1((a1));
 a2((a2));
 a3((a3));
 b1((b1));
 b2((b2));
 b3((b3));
 b4((b4));
 c1((c1));
 c2((c2));
 c1X((c1));
 c2X((c2));

 root-->a1;
 root-->a2;
 root-->a3;
 a1-->b1;
 a1-->b2;
 a2-->b2;
 a3-->b3;
 a3-->b4;
 b3-->c1;
 b3-->c2;
 b4-->c2;

 c1X-->c2X;

 style c1 fill:#48A127,stroke:#333,stroke-width:4px;
 style c1X fill:#48A127,stroke:#333,stroke-width:4px;
 style c2 fill:#279BA1,stroke:#333,stroke-width:4px;
 style c2X fill:#279BA1,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray

Graph for display on ReadTheDocs

 graph TD;
 root((root));
 a1((a1));
 a2((a2));
 a3((a3));
 b1((b1));
 b2((b2));
 b3((b3));
 b4((b4));
 c1((c1));
 c2((c2));
 c1X((c1));
 c2X((c2));

 root-->a1;
 root-->a2;
 root-->a3;
 a1-->b1;
 a1-->b2;
 a2-->b2;
 a3-->b3;
 a3-->b4;
 b3-->c1;
 b3-->c2;
 b4-->c2;

 c1X-->c2X;

 style c1 fill:#48A127,stroke:#333,stroke-width:4px;
 style c1X fill:#48A127,stroke:#333,stroke-width:4px;
 style c2 fill:#279BA1,stroke:#333,stroke-width:4px;
 style c2X fill:#279BA1,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray

Find the shortest path between two nodes

First, let us try to get the shortest path from c1 and c2 on first_graph, where no path exists:

with graph_scope(first_graph):
 c1 = DAGNode.objects.get(name="c1")
 c2 = DAGNode.objects.get(name="c2")

 print(c1.shortest_path(c2))

Output: django_directed.models.NodeNotReachableError

Next, we will perform the same query on another_graph, which does have a path from c1 to c2 through a single Edge. The value returned is a QuerySet of the Nodes in the path.

with graph_scope(another_graph):
 c1 = DAGNode.objects.get(name="c1")
 c2 = DAGNode.objects.get(name="c2")

 print(c1.shortest_path(c2))

Output: <QuerySet [<NetworkNode: c1>, <NetworkNode: c2>]>

For additional methods of querying, see the API docs for Graph [https://django-directed.readthedocs.io/en/latest/api/graph.html], Edge [https://django-directed.readthedocs.io/en/latest/api/edge.html], and Node [https://django-directed.readthedocs.io/en/latest/api/node.html].

Example apps

Note

These are in-progress, and not ready for actual use.

A series of example apps demonstrating vaious aspects and techniques of using django-directed.

	Airports [https://github.com/jacklinke/django-directed/tree/main/tests/example/airports] - An app demonstrating one method of working with multidimensional graphs to model airports with a common set of nodes, and edges for each of the connecting airlines.

	Electrical Grids [https://github.com/jacklinke/django-directed/tree/main/tests/example/electrical_grids] - Demonstrate graphs of neighborhood electrical connections and meters.

	Family Trees [https://github.com/jacklinke/django-directed/tree/main/tests/example/family_trees] - Demonstrates building family trees for multiple mythological families.

	Forums [https://github.com/jacklinke/django-directed/tree/main/tests/example/forums] - Forums and threaded comments.

	NetworkX Graphs [https://github.com/jacklinke/django-directed/tree/main/tests/example/networkx_graphs] - Demonstration of using NetworkX alongside django-directed.

See the Example Apps [https://github.com/jacklinke/django-directed/tree/main/tests/example] folder.

Why not use a graph database instead?

	Compatibility - Graph databases don’t play very nicely with Django and the Django ORM. There are 3rd party packages to shoehorn in the required functionality, but django is designed for relational databases.

	Simplicity - If most of the work you are doing needs a relational database, mixing an additional entirely different kind of database into the project might not be ideal.

	Tradeoffs - Graph databases are not a panacea. They bring their own set of pros and cons. Maybe a graph database is ideal for your project. But maybe you’ll do just as well using django-directed. I encourage you to read up on the benefits graph databases bring, the issues they solve, and also the areas where they do not perform as well as a relational database.

Installation

Basic

django-directed can be installed with pip

pip install django-directed

In future iterations of this project, expect to see the option to install ‘extras’ for access to additional features and capabilities.

External packages and plugins

Terminology and Definitions

Learning to use graphs can be challenging because some concepts have multiple equivalent or similar terms and definitions. For instance, the words ‘node’ and ‘vertex’ typically mean the same thing, but some industries or fields may prefer one to the other.

To help clarify what is meant throughout this project, we define the following terms and definitions. We make heavy use of familial terms, which can help with mentally visualizing the concepts.

This document does is not intended as a course in general graph theory. A graph in the context of this project is made up of nodes which are connected by edges. Edges typically link two nodes asymmetrically in all of the directed graphs within django-directed.

Node

Here, A is a node. Another equivalent name for node that you may sometimes hear is vertex. While they are interchangeable, we will use the term node (or nodes for plural) exclusively within this project for consistency.

 graph TD;
 A((A));

 style A fill:green,stroke:#333,stroke-width:4px;

Edge

Here, e is an edge in the graph between nodes A and B. Edges connect nodes, and are directed (denoted here with an arrowhead). Edges are also called lines, links, arcs, or arrows. For consistency, this project will always use the term edge (or edges for plural).

 graph TD;
 A((A));
 B((B));

 A--e-->B;

 linkStyle 0 stroke-width:3px,fill:none,stroke:green;

Root

Here, Node A is the root of the graph. It has an in-degree (number of edges coming ‘in’) of 0.

 graph TD;
 A((A));
 B((B));
 C((C));
 D((D));

 A-->B;
 A-->C;
 B-->D;
 C-->D;

 style A fill:green,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray

Roots

Some types of graphs may have multiple roots. Here, Nodes A and B are roots of the graph. Again, if the in-degree is 0, the node is a root.

 graph TD;
 A((A));
 B((B));
 C((C));
 D((D));

 A-->C;
 B-->C;
 B-->D;
 C-->D;

 style A fill:green,stroke:#333,stroke-width:4px;
 style B fill:green,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray

Leaf / Leaves

Here, Nodes D and e are leaves in the graph. They both have an out-degree (number of edges ‘out’ of the node) of 0.

 graph TD;
 A((A));
 B((B));
 C((C));
 D((D));
 E((E));

 A-->B;
 A-->C;
 B-->D;
 C-->D;
 A-->E;

 style D fill:green,stroke:#333,stroke-width:4px;
 style E fill:green,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray

Orphan

In a given Graph, an orphan is a node with no parents nor children. Orphans have an in-degree of 0 and and out-degree of 0. Here, node E is an orphan. There are no edges connecting it to any other node.

(Note, there is no equivalent for edges. Every edge connects two [or in special cases, more] nodes.)

 graph TD;
 A((A));
 B((B));
 C((C));
 D((D));
 E((E));

 %% 0
 A-->B;

 %% 1
 A-->C;

 %% 2
 B-->D;

 %% 3
 C-->D;

 style E fill:green,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray

Parent / Parents

The parents for a given node x, if any exist, are those nodes which have a directed edge ‘in’ to node x. In graph theory, this may be refered to as a direct predecessor.

Here, node A is a parent of node B, and node B is a parent of node C. Depending on the type of graph, nodes may have zero, one, or multiple parents.

We also refer to parent edges, which are the directed edges themselves which point to the node. In this example, edge e1 is a parent edge of node B, and edge e2 is a parent edge of node C.

 graph TD;
 A((A));
 B((B));
 C((C));

 A--e1-->B;
 B--e2-->C;

 style A fill:#20961d,stroke:#333,stroke-width:4px;
 style B fill:#bdad01,stroke:#333,stroke-width:4px;
 style C fill:#f86f06,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray

Child / Children

The children for a given node x, if any exist, are those nodes which have a directed edge ‘out’ from node x. In graph theory, this may be refered to as a direct successor.

Here, node B is a child of node A, and node C is a child of node B. Depending on the type of graph, nodes may have zero, one, or multiple children.

We also refer to children edges, which are the directed edges themselves which point from the node. In this example, edge e1 is a child edge of node A, and edge e2 is a child edge of node B.

 graph TD;
 A((A));
 B((B));
 C((C));

 A--e1-->B;
 B--e2-->C;

 style A fill:#f86f06,stroke:#333,stroke-width:4px;
 style B fill:#bdad01,stroke:#333,stroke-width:4px;
 style C fill:#20961d,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray

Ancestors

All nodes in connected paths in a rootward direction. In graph theory, this may be refered to as predecessors.

In this example, the ancestors for node I are nodes A, C, E, and F.

 graph TD;
 A((A));
 B((B));
 C((C));
 D((D));
 E((E));
 F((F));
 G((G));
 H((H));
 I((I));
 J((J));
 K((K));

 A-->B;
 A-->C;
 B-->D;
 C-->D;
 A-->E;
 C-->F;
 E-->F;
 D-->G;
 G-->H;
 F-->H;
 F-->I;
 E-->J;
 J-->K;

 style I fill:green,stroke:#333,stroke-width:4px;
 style A fill:#f86f06,stroke:#333,stroke-width:4px;
 style C fill:#f86f06,stroke:#333,stroke-width:4px;
 style F fill:#f86f06,stroke:#333,stroke-width:4px;
 style E fill:#f86f06,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray
 linkStyle 1 stroke-width:3px,fill:none,stroke:green;
 linkStyle 4 stroke-width:3px,fill:none,stroke:green;
 linkStyle 5 stroke-width:3px,fill:none,stroke:green;
 linkStyle 6 stroke-width:3px,fill:none,stroke:green;
 linkStyle 10 stroke-width:3px,fill:none,stroke:green;

Descendants

All nodes in connected paths in a leafward direction. In graph theory, this may be refered to as successors.

In this example, the descendants for node C are nodes D, F, G, H, and I.

 graph TD;
 A((A));
 B((B));
 C((C));
 D((D));
 E((E));
 F((F));
 G((G));
 H((H));
 I((I));
 J((J));
 K((K));

 A-->B;
 A-->C;
 B-->D;
 C-->D;
 A-->E;
 C-->F;
 E-->F;
 D-->G;
 G-->H;
 F-->H;
 F-->I;
 E-->J;
 J-->K;

 style C fill:green,stroke:#333,stroke-width:4px;
 style D fill:#f86f06,stroke:#333,stroke-width:4px;
 style F fill:#f86f06,stroke:#333,stroke-width:4px;
 style G fill:#f86f06,stroke:#333,stroke-width:4px;
 style H fill:#f86f06,stroke:#333,stroke-width:4px;
 style I fill:#f86f06,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray
 linkStyle 3 stroke-width:3px,fill:none,stroke:green;
 linkStyle 5 stroke-width:3px,fill:none,stroke:green;
 linkStyle 7 stroke-width:3px,fill:none,stroke:green;
 linkStyle 8 stroke-width:3px,fill:none,stroke:green;
 linkStyle 9 stroke-width:3px,fill:none,stroke:green;
 linkStyle 10 stroke-width:3px,fill:none,stroke:green;

Clan

The clan of a node includes all ancestor nodes, the node itself, and all descendant nodes. In graph theory, this can be refered to as the maximal paths through a given node.

In this example, the clan for node F includes nodes A, C, E, H, and I.

 graph TD;
 A((A));
 B((B));
 C((C));
 D((D));
 E((E));
 F((F));
 G((G));
 H((H));
 I((I));
 J((J));
 K((K));

 A-->B;
 A-->C;
 B-->D;
 C-->D;
 A-->E;
 C-->F;
 E-->F;
 D-->G;
 G-->H;
 F-->H;
 F-->I;
 E-->J;
 J-->K;

 style F fill:green,stroke:#333,stroke-width:4px;
 style A fill:#f86f06,stroke:#333,stroke-width:4px;
 style C fill:#f86f06,stroke:#333,stroke-width:4px;
 style E fill:#f86f06,stroke:#333,stroke-width:4px;
 style H fill:#f86f06,stroke:#333,stroke-width:4px;
 style I fill:#f86f06,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray
 linkStyle 1 stroke-width:3px,fill:none,stroke:green;
 linkStyle 4 stroke-width:3px,fill:none,stroke:green;
 linkStyle 5 stroke-width:3px,fill:none,stroke:green;
 linkStyle 6 stroke-width:3px,fill:none,stroke:green;
 linkStyle 9 stroke-width:3px,fill:none,stroke:green;
 linkStyle 10 stroke-width:3px,fill:none,stroke:green;

Siblings

All nodes that share a parent with this node, excluding the node itself.

In this example, the siblings of node C are nodes B, and E, because they all have node A in common as a parent.

 graph TD;
 A((A));
 B((B));
 C((C));
 D((D));
 E((E));
 F((F));
 G((G));
 H((H));
 I((I));
 J((J));
 K((K));

 A-->B;
 A-->C;
 B-->D;
 C-->D;
 A-->E;
 C-->F;
 E-->F;
 D-->G;
 G-->H;
 F-->H;
 F-->I;
 E-->J;
 J-->K;

 style C fill:green,stroke:#333,stroke-width:4px;
 style B fill:#f86f06,stroke:#333,stroke-width:4px;
 style E fill:#f86f06,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray
 linkStyle 1 stroke-width:3px,fill:none,stroke:green;
 linkStyle 0 stroke-width:3px,fill:none,stroke:green;
 linkStyle 4 stroke-width:3px,fill:none,stroke:green;

Partners

All nodes that share a child with this node, excluding the node itself.

In this example, the partners of node C are nodes B, and E, because nodes B and C share node D as a child, and nodes C and E share node F as a child.

 graph TD;
 A((A));
 B((B));
 C((C));
 D((D));
 E((E));
 F((F));
 G((G));
 H((H));
 I((I));
 J((J));
 K((K));

 A-->B;
 A-->C;
 B-->D;
 C-->D;
 A-->E;
 C-->F;
 E-->F;
 D-->G;
 G-->H;
 F-->H;
 F-->I;
 E-->J;
 J-->K;

 style C fill:green,stroke:#333,stroke-width:4px;
 style B fill:#f86f06,stroke:#333,stroke-width:4px;
 style E fill:#f86f06,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray
 linkStyle 2 stroke-width:3px,fill:none,stroke:green;
 linkStyle 3 stroke-width:3px,fill:none,stroke:green;
 linkStyle 5 stroke-width:3px,fill:none,stroke:green;
 linkStyle 6 stroke-width:3px,fill:none,stroke:green;

Distance

The shortest number of hops from one node to a target node. The distance between node C and node H is 2. This is because the path from C to F to H involves 2 edges.

There is another path from C to H through nodes D and G, but that path is longer (3 edges), and when we refer to distance in this project, we always mean the smallest number of hops.

 graph TD;
 A((A));
 B((B));
 C((C start));
 D((D));
 E((E));
 F((F));
 G((G));
 H((H end));
 I((I));
 J((J));
 K((K));

 A-->B;
 A-->C;
 B-->D;
 C--1-->D;
 A-->E;
 C--1-->F;
 E-->F;
 D--2-->G;
 G--3-->H;
 F--2-->H;
 F-->I;
 E-->J;
 J-->K;

 style C fill:green,stroke:#333,stroke-width:4px;
 style F fill:#f86f06,stroke:#333,stroke-width:4px;
 style H fill:green,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray
 linkStyle 5 stroke-width:3px,fill:none,stroke:green;
 linkStyle 9 stroke-width:3px,fill:none,stroke:green;

Node Depth

The distance of the node from furthest root in the graph. Because this can be a bit challenging to visualize, a few examples are provided below.

Because node A is the highest (and only) root in the following graph, its node depth is 0.

 graph TD;
 A((A));
 B((B));
 C((C));
 D((D));
 E((E));
 F((F));
 G((G));
 H((H));
 I((I));
 J((J));
 K((K));

 A-->B;
 A-->C;
 B-->D;
 C-->D;
 A-->E;
 C-->F;
 E-->F;
 D-->G;
 G-->H;
 F-->H;
 F-->I;
 E-->J;
 J-->K;

 style A fill:green,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray

Using the same graph as before, consider the depth of node H. There is only a single root (node A) in this graph, and the distance between node A and node H is 3. So the node depth of node H is 3.

 graph TD;
 A((A));
 B((B));
 C((C));
 D((D));
 E((E));
 F((F));
 G((G));
 H((H));
 I((I));
 J((J));
 K((K));

 A-->B;
 A--1-->C;
 B-->D;
 C-->D;
 A-->E;
 C--2-->F;
 E-->F;
 D-->G;
 G-->H;
 F--3-->H;
 F-->I;
 E-->J;
 J-->K;

 style A fill:green,stroke:#333,stroke-width:4px;
 style C fill:#f86f06,stroke:#333,stroke-width:4px;
 style F fill:#f86f06,stroke:#333,stroke-width:4px;
 style H fill:green,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray
 linkStyle 1 stroke-width:3px,fill:none,stroke:green;
 linkStyle 5 stroke-width:3px,fill:none,stroke:green;
 linkStyle 9 stroke-width:3px,fill:none,stroke:green;

Finally, we will look at a more complicated example with multiple roots at different levels. Here we want the node depth of node F.

While both nodes A and D are roots in this graph (they have in-degree of 0), node A has a greater distance from node F, so we determine the depth of node F from the viewpoint of node A. It takes 3 hops to reach node F from node A, so the node depth of node F is 3.

 graph TD;
 A((A));
 B((B));
 C((C));
 D((D));
 E((E));
 F((F));

 A--1-->B;
 B--2-->C;
 D-->E;
 E-->F;
 C--3-->F;

 style A fill:green,stroke:#333,stroke-width:4px;
 style B fill:#f86f06,stroke:#333,stroke-width:4px;
 style C fill:#f86f06,stroke:#333,stroke-width:4px;
 style F fill:green,stroke:#333,stroke-width:4px;

 linkStyle default fill:none,stroke:gray
 linkStyle 0 stroke-width:3px,fill:none,stroke:green;
 linkStyle 1 stroke-width:3px,fill:none,stroke:green;
 linkStyle 4 stroke-width:3px,fill:none,stroke:green;

Concepts

Internally, django-directed uses a combination of factories and abstract models, which makes possible:

	Composition of graph model sets with limited repetition of code

	Registering base model types for use with other project and in django-directed-admin

	Passing a standardized configuration object to the factory to change model functionality

Within a Django project utilizing django-directed the graph, edges, and nodes are represented as distinct concrete models, and multiple types of graphs can be built within the same project. These three work together to provide a consolidated API for working with graphs.

	a Graph model (extended from BaseGraph and then AbstractGraph)

	an Edge model (extended from BaseEdge and then AbstractEdge)

	a Node model (extended from BaseNode and then AbstractNode)

 erDiagram
 Graph {
 any id
 }
 Node {
 ManyToManyField children
 }
 Edge {
 Graph id PK
 Node parent FK "parent Node"
 Node child FK "child Node"
 }

 Graph ||--o{ Edge : ""
 Node ||--o{ Edge : parent
 Node ||--o{ Edge : child
 Node }|--|{ Node : "M2M through Edge"

The connected graph is defined by the Edges associated with a Graph instance. This does mean an additional join on the Gaph table, but for typical use-cases the ratio of Graph instances to those of Nodes and Edges is tiny.

Building Graphs

Building graphs in django-directed starts with configuring the type of graph you want to use, writing the models, and then creating and running migrations.

Configuration

Models

Model Instantiation

Model Migrations

Querying Graphs

Work In Progress

Manipulating Graphs

Work In Progress

Exporting Graphs

Work In Progress

Graph

WORK IN PROGRESS

Manager/QuerySet Methods

For future consideration:

	clone()

Methods used for building/manipulating

For future consideration:

	add_node() add node to graph, optionally providing a list of parent nodes

	remove_nodes(nodes) removes nodes from the graph

	add_edge() adds connections or paths between nodes in graphs

	remove_edges(edges) removes connection or paths between nodes in graphs

Methods returning a QuerySet of Nodes

None

Methods returning a QuerySet of Edges

None

Methods returning a Boolean

None

Methods returning other values

	
node_count()

	:return: Number of Nodes in the Graph
:rtype: int

	
edge_count()

	:return: Number of Edges in the Graph
:rtype: int

	
graph_hash()

	:return: Hash value for the Graph
:rtype: TBD

Model Methods

Methods used for building/manipulating an instance

None

Methods returning a QuerySet of Nodes

None

Methods returning a QuerySet of Edges

None

Methods returning a Boolean

	
has_connection(node_from, node_to)

	Checks if a connection or path exists between two Node instances, within the current Graph.

:param Node node_from: The starting Node
:param Node node_to: The ending Node
:return: True if path exists from node_from to node_to
:rtype: bool

For future consideration:

	contains_value() check if a graph instance contains a certain value

Methods returning other values

None

Node

Manager/QuerySet Methods

Methods used for building/manipulating

None

Methods returning a QuerySet of Nodes

	
roots(node=None)

	Returns a QuerySet of all root Nodes (nodes with no parents) in the Node model.

:param Node node: (optional) if specified, returns only the roots for that node
:return: Root Nodes
:rtype: QuerySet

	
leaves(node=None)

	Returns a QuerySet of all leaf Nodes (nodes with no children) in the Node model.

:param Node node: (optional) if specified, returns only the leaves for that node
:return: Leaf Nodes
:rtype: QuerySet

	
islands()

	Returns a QuerySet of all Nodes with no parents or children (degree 0).

:return: Island Nodes
:rtype: QuerySet

Methods returning a QuerySet of Edges

None

Methods returning a Boolean

None

Methods returning other values

None

Model Methods

Methods used for building/manipulating an instance

	
add_child(child)

	Provided with a Node instance, attaches that instance as a child to the current Node instance.

:param Node child: The Node to be added as a child
:return: The newly created Edge between self and child
:rtype: Edge

	
add_children(children)

	Provided with a QuerySet of Node instances, attaches those instances as children of the current Node instance.

:param QuerySet children: The Nodes to be added as children
:return: The newly created Edges between self and children
:rtype: list

	
add_parent(parent)

	Provided with a Node instance, attaches that instance as a parent to the current Node instance.

:param Node parent: The Node to be added as a parent
:return: The newly created Edge between self and parent
:rtype: Edge

	
add_parents(parents)

	Provided with a QuerySet of Node instances, attaches those instances as parents of the current Node instance.

:param QuerySet parents: The Nodes to be added as parents
:return: The newly created Edges between self and parents
:rtype: list

	
remove_child(child, delete_node=False)

	Removes the edge connecting this node to child if a child Node instance is provided. Optionally deletes the child node as well.

:param Node child: The Node to be removed as a child
:return: True if any Nodes were removed, otherwise False
:rtype: bool

	
remove_children(children)

	Provided with a QuerySet of Node instances, removes those instances as children of the current Node instance.

:param QuerySet children: The Nodes to be removed as children
:return: True if any Nodes were removed, otherwise False
:rtype: bool

	
remove_all_children(delete_node=False)

	Removes all children of the current Node instance, optionally deleting self as well.

:param QuerySet children: The Nodes to be removed as children
:return: True if any Nodes were removed, otherwise False
:rtype: bool

	
remove_parent(parent, delete_node=False)

	Removes the edge connecting this node to parent if a parent Node instance is provided. Optionally deletes the parent node as well.

:param Node parent: The Node to be removed as a parent
:return: True if any Nodes were removed, otherwise False
:rtype: bool

	
remove_parents(parents)

	Provided with a QuerySet of Node instances, removes those instances as parents of the current Node instance.

:param QuerySet parents: The Nodes to be removed as parents
:return: True if any Nodes were removed, otherwise False
:rtype: bool

	
remove_all_parents(delete_node=False)

	Removes all parents of the current Node instance, optionally deleting self as well.

:param QuerySet parents: The Nodes to be removed as parents
:return: True if any Nodes were removed, otherwise False
:rtype: bool

Methods returning a QuerySet of Nodes

	
ancestors()

	Returns all Nodes in connected paths in a rootward direction.

:return: Nodes
:rtype: QuerySet

	
self_and_ancestors()

	Returns all Nodes in connected paths in a rootward direction, prepending self.

:return: Nodes
:rtype: QuerySet

	
ancestors_and_self()

	Returns all Nodes in connected paths in a rootward direction, appending self.

:return: Nodes
:rtype: QuerySet

	
descendants()

	Returns all Nodes in connected paths in a leafward direction.

:return: Nodes
:rtype: QuerySet

	
self_and_descendants()

	Returns all Nodes in connected paths in a leafward direction, prepending self.

:return: Nodes
:rtype: QuerySet

	
descendants_and_self()

	Returns all Nodes in connected paths in a leafward direction, appending self.

:return: Nodes
:rtype: QuerySet

	
siblings()

	Returns all Nodes that share a parent with this Node.

:return: Nodes
:rtype: QuerySet

	
self_and_siblings()

	Returns all Nodes that share a parent with this Node, prepending self.

:return: Nodes
:rtype: QuerySet

	
siblings_and_self()

	Returns all Nodes that share a parent with this Node, appending self.

:return: Nodes
:rtype: QuerySet

	
partners()

	Returns all Nodes that share a child with this Node.

:return: Nodes
:rtype: QuerySet

	
self_and_partners()

	Returns all Nodes that share a child with this Node, prepending self.

:return: Nodes
:rtype: QuerySet

	
partners_and_self()

	Returns all Nodes that share a child with this Node, appending self.

:return: Nodes
:rtype: QuerySet

	
clan()

	Returns a QuerySet with all ancestor Nodes, self, and all descendant Nodes.

:return: Nodes
:rtype: QuerySet

	
connected_graph()

	Returns all nodes connected in any way to the current Node instance.

:param Node directional: (optional) if True, path searching operates normally (in leafward direction), if False search operates in both directions
:return: Nodes
:rtype: QuerySet

	
shortest_path(target_node)

	Returns the shortest path from self to target Node. Resulting Queryset is sorted leafward, regardless of the relative position of starting and ending nodes.

:param Node target_node: The target Node for searching
:param Node directional: (optional) if True, path searching operates normally (in leafward direction), if False search operates in both directions
:return: Nodes
:rtype: QuerySet

	
all_paths(target_node)

	Returns all paths from self to target Node. Resulting Queryset is sorted leafward, regardless of the relative position of starting and ending nodes.

:param Node target_node: The target Node for searching
:param Node directional: (optional) if True, path searching operates normally (in leafward direction), if False search operates in both directions
:return: Nodes
:rtype: QuerySet

	
roots()

	Returns a QuerySet of all root Nodes, if any, for the current Node.

:return: Root Nodes
:rtype: QuerySet

	
leaves()

	Returns a QuerySet of all leaf Nodes, if any, for the current Node.

:return: Leaf Nodes
:rtype: QuerySet

For future consideration:

	immediate_family (parents, self and children)

	piblings (aka: aunts/uncles)

	niblings (aka: nieces/nephews)

	cousins

Methods returning a QuerySet of Edges

	
ancestor_edges()

	Ancestor Edge instances for the current Node.

:return: Ancestor Edges
:rtype: QuerySet

	
descendant_edges()

	Descendant Edge instances for the current Node.

:return: Descendant Edges
:rtype: QuerySet

	
clan_edges()

	Clan Edge instances for the current Node.

:return: Clan Edges
:rtype: QuerySet

Methods returning a Boolean

	
is_root()

	Returns True if the current Node instance has no parents (Node has an in-degree 0 and out-degree >= 0).

:rtype: bool

	
is_leaf()

	Returns True if the current Node instance has no children (Node has an in-degree >=0 and out-degree 0).

:rtype: bool

	
is_island()

	Returns True if the current Node instance has no parents or children (Node has degree 0).

:rtype: bool

	
path_exists_from(target_node, directional=True)

	Checks whether there is a path from the target Node instance to the current Node instance.

:param Node target_node: The node to compare against
:param Node directional: (optional) if True, path searching operates normally (in leafward direction), if False search operates in both directions
:rtype: bool

	
path_exists_to(target_node, directional=True)

	Checks whether there is a path from the current Node instance to the target Node instance.

:param Node target_node: The node to compare against
:param Node directional: (optional) if True, path searching operates normally (in leafward direction), if False search operates in both directions
:rtype: bool

	
is_ancestor_of(target_node, directional=True)

	Checks whether the current Node instance is an ancestor of the provided target Node instance.

:param Node target_node: The node to compare against
:param Node directional: (optional) if True, path searching operates normally (in leafward direction), if False search operates in both directions
:rtype: bool

	
is_descendant_of(target_node, directional=True)

	Checks whether the current Node instance is a descendant of the provided target Node instance.

:param Node target_node: The node to compare against
:param Node directional: (optional) if True, path searching operates normally (in leafward direction), if False search operates in both directions
:rtype: bool

	
is_sibling_of(target_node, directional=True)

	Checks whether the current Node instance is a sibling of the provided target Node instance (see terminology).

:param Node target_node: The node to compare against
:param Node directional: (optional) if True, path searching operates normally (in leafward direction), if False search operates in both directions
:rtype: bool

	
is_partner_of(target_node, directional=True)

	Checks whether the current Node instance is a partner of the provided target Node instance (see terminology).

:param Node target_node: The node to compare against
:param Node directional: (optional) if True, path searching operates normally (in leafward direction), if False search operates in both directions
:rtype: bool

Methods returning other values

	
ancestor_count()

	Returns the total number of ancestor Nodes.

:rtype: int

	
descendant_count()

	Returns the total number of descendant Nodes.

:rtype: int

	
clan_count()

	Returns the total number of clan Nodes.

:rtype: int

	
sibling_count()

	Returns the total number of sibling Nodes.

:rtype: int

	
partner_count()

	Returns the total number of partner Nodes.

:rtype: int

	
connected_graph_node_count()

	Returns the count of all ancestors Nodes, self, and all descendant Nodes.

:rtype: int

	
node_depth()

	Returns the depth of this Node instance from furthest root Node.

:rtype: int

	
distance(target_node)

	Returns the shortest hops count to the target Node.

:param Node target_node: The node to compare against
:rtype: int

For future consideration:

	descendant_tree()

	ancestor_tree()

	
graphs()

	A Node can be associated with multiple Graphs. This method returns a QuerySet of all Graph instances associated with the current Node.

:return: Graphs to which this Node belongs
:rtype: QuerySet

Edge

Manager/QuerySet Methods

None

Methods used for building/manipulating

None

Methods returning a QuerySet of Nodes

None

Methods returning a QuerySet of Edges

	
ancestor_edges(target_node)

	All Edge instances which are ancestors of the target Node.

:param Node target_node: The target Node for searching
:return: Ancestor Edges
:rtype: QuerySet

	
descendant_edges(target_node)

	All Edge instances descended from the target Node.

:param Node target_node: The target Node for searching
:return: Descendant Edges
:rtype: QuerySet

	
clan_edges(target_node)

	All Edge instances which are ancestors, self, and descendants of the target Node.

:param Node target_node: The target Node for searching
:return: Clan Edges
:rtype: QuerySet

	
shortest_path_edges(node_from, node_to)

	All Edge instances for the shortest path from node_from to node_to.

:param Node node_from: The starting Node
:param Node node_to: The ending Node
:return: Shortest path Edges
:rtype: QuerySet

	
all_path_edges(node_from, node_to)

	All Edge instances for all paths from node_from to node_to.

:param Node node_from: The starting Node
:param Node node_to: The ending Node
:return: Edges
:rtype: QuerySet

Methods returning a Boolean

	
path_is_valid()

	Verify that the current QuerySet of Edges result in a contiguous path.

:rtype: bool

Methods returning other values

	
from_node_queryset(nodes)

	Returns all Edge instances where a parent and child Node are within the provided QuerySet of Nodes.

:param QuerySet nodes: Nodes of interest
:return: Edges with both parent and child Nodes in the provided QuerySet of Nodes
:rtype: QuerySet

	
sorted()

	Sorts the current Edge QuerySet in a rootward direction

:return: Sorted Edges
:rtype: QuerySet

Model Methods

Methods used for building/manipulating an instance

	
add_edge(from_node, to_node)

	Adds an edge between two Node instances.

:param Node node_from: The starting Node
:param Node node_to: The ending Node
:return: Newly created Edge
:rtype: Edge

	
insert_node(node, clone_to_rootside=False, clone_to_leafside=False, pre_save=None, post_save=None)

	Insert a Node into an existing Edge instance.

:param Node node: The Node to insert
:param bool clone_to_rootside: (optional) Clone properties of the existing Edge to the new rootside Edge
:param bool clone_to_leafside: (optional) Clone properties of the existing Edge to the new leafside Edge
:param callable pre_save: (optional) Helper function to modify before saving
:param callable post_save: (optional) Helper function to modify after saving
:return: Newly created rootside Edge (parent to the inserted node) and leafside Edge (child to the inserted Node)
:rtype: tuple

Process:

	Add a new Edge from the parent Node of the current Edge instance to the provided Node instance, optionally cloning properties of the existing Edge.

	Add a new Edge from the provided Node instance to the child Node of the current Edge instance, optionally cloning properties of the existing Edge.

	Remove the original Edge instance.

The instance will still exist in memory, though not in database (https://docs.djangoproject.com/en/3.1/ref/models/instances/#refreshing-objects-from-database). Recommend running the following after conducting the deletion:

del instancename

Cloning will fail if a field has unique=True, so a pre_save function can be passed into this method. Likewise, a post_save function can be passed in to rebuild relationships. For instance, if you have a name field that is unique and generated automatically in the model’s save() method, you could pass in a the following pre_save function to clear the name prior to saving the new Edge instance(s):

def pre_save(new_edge):
 new_edge.name = ""
 return new_edge

A more complete example, where we have models named DAGEdge & DAGNode, and we want to insert a new Node (n2) into Edge e1, while copying e1’s field properties (except name) to the newly created rootside Edge instance (n1 to n2) is shown below.

Original Final

n1 o n1 o
 | \
 | o n2
 | /
n3 o n3 o

from myapp.models import DAGEdge, DAGNode

n1 = DAGNode.objects.create(name="n1")
n2 = DAGNode.objects.create(name="n2")
n3 = DAGNode.objects.create(name="n3")

Connect n3 to n1
n1.add_child(n3)

e1 = DAGEdge.objects.last()

function to clear the `name` field, which is autogenerated and must be unique
def pre_save(new_edge):
 new_edge.name = ""
 return new_edge

DAGEdge.objects.insert_node(e1, n2, clone_to_rootside=True, pre_save=pre_save)

Methods returning a QuerySet of Nodes

None

Methods returning a QuerySet of Edges

None

Methods returning a Boolean

None

Methods returning other values

None

Reference

django_directed

Initialize module.

admin.py

Admin for the django_directed app.

apps.py

App configuration for the django_directed app.

	
class django_directed.apps.DjangoDirectedConfig(app_name, app_module)

	

config.py

context_managers.py

Context managers for the django_directed app.

	
django_directed.context_managers.get_current_graph_instance(graph_fullname)

	Returns the graph if it exists in the local thread.

	
django_directed.context_managers.graph_scope(graph)

	Context manager for graphs.

Used to set and cleanup Graph instance. If nested, saves outer context and resets it at conclusion of scope.

	Parameters:

	graph (BaseGraph) –

fields.py

Custom model fields for Django Directed.

	
class django_directed.fields.CurrentGraphFKField(*args, **kwargs)

	A ForeignKey field that defaults to the current Graph instance.

	
deconstruct()

	Deconstructs the field.

	
pre_save(model_instance, add)

	Sets the value of the field on save.

forms.py

Forms for django_directed.

manager_methods.py

Manager methods for the django_directed app.

model_methods.py

Model methods for django_directed.

models/abstract_base_graph_models.py

Abstract Base Graph Models for Django Directed.

	
class django_directed.models.abstract_base_graph_models.BaseEdge(*args, **kwargs)

	Base Edge Model lets us verify that a given model instance derives from BaseEdge.

	
class django_directed.models.abstract_base_graph_models.BaseGraph(*args, **kwargs)

	Base Graph Model lets us verify that a given model instance derives from BaseGraph.

	
class django_directed.models.abstract_base_graph_models.BaseNode(*args, **kwargs)

	Base Node Model lets us verify that a given model instance derives from BaseNode.

	
django_directed.models.abstract_base_graph_models.base_edge(config)

	Creates “Abstract Edge Model”.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_base_graph_models.base_graph(config)

	Creates “Abstract Graph Model”.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_base_graph_models.base_node(config)

	Creates “Abstract Node Model”.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_base_graph_models.get_graph_aware_manager(config)

	Creates a manager that is aware of the current graph instance.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_base_graph_models.get_graph_aware_queryset(config)

	Creates a queryset that is aware of the current graph instance.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_base_graph_models.get_model_class(model_fullname)

	Provided with a model fullname (app_name.ModelName), returns the associated model class.

	Parameters:

	model_fullname (str) –

	Return type:

	Model

models/abstract_graph_models.py

Abstract models for Django Directed.

	
django_directed.models.abstract_graph_models.arborescence_edge_factory(config)

	Type: Subclassed Abstract Model. Abstract methods of the Edge base model are implemented.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_graph_models.arborescence_graph_factory(config)

	Type: Subclassed Abstract Model. Abstract methods of the Graph base model are implemented.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_graph_models.arborescence_node_factory(config)

	Type: Subclassed Abstract Model. Abstract methods of the Node base model are implemented.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_graph_models.cyclic_edge_factory(config)

	Type: Subclassed Abstract Model. Abstract methods of the Edge base model are implemented.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_graph_models.cyclic_graph_factory(config)

	Type: Subclassed Abstract Model. Abstract methods of the Graph base model are implemented.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_graph_models.cyclic_node_factory(config)

	Type: Subclassed Abstract Model. Abstract methods of the Node base model are implemented.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_graph_models.dag_edge_factory(config)

	Type: Subclassed Abstract Model. Abstract methods of the Edge base model are implemented.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_graph_models.dag_graph_factory(config)

	Type: Subclassed Abstract Model. Abstract methods of the Graph base model are implemented.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_graph_models.dag_node_factory(config)

	Type: Subclassed Abstract Model. Abstract methods of the Node base model are implemented.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_graph_models.polytree_edge_factory(config)

	Type: Subclassed Abstract Model. Abstract methods of the Edge base model are implemented.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_graph_models.polytree_graph_factory(config)

	Type: Subclassed Abstract Model. Abstract methods of the Graph base model are implemented.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.abstract_graph_models.polytree_node_factory(config)

	Type: Subclassed Abstract Model. Abstract methods of the Node base model are implemented.

	Parameters:

	config (GraphConfig) –

models/model_factory.py

Model factory for directed graph models.

	
class django_directed.models.model_factory.ArborescenceService(config)

	Returns the actual Graph, Edge, and Node models.

	Parameters:

	config (GraphConfig) –

	
edge()

	Returns the actual Edge model.

	
graph()

	Returns the actual Graph model.

	
node()

	Returns the actual Node model.

	
class django_directed.models.model_factory.CyclicService(config)

	Returns the actual Graph, Edge, and Node models.

	Parameters:

	config (GraphConfig) –

	
edge()

	Returns the actual Edge model.

	
graph()

	Returns the actual Graph model.

	
node()

	Returns the actual Node model.

	
class django_directed.models.model_factory.DAGService(config)

	Returns the actual Graph, Edge, and Node models.

	Parameters:

	config (GraphConfig) –

	
edge()

	Returns the actual Edge model.

	
graph()

	Returns the actual Graph model.

	
node()

	Returns the actual Node model.

	
class django_directed.models.model_factory.DirectedServiceFactory

	Registers django-directed services.

	
get(config, **kwargs)

	Creates and returns a new model factory for directed graph models.

	Parameters:

	config (GraphConfig) –

	
register(key, builder)

	Registers model factory services.

	
services_enum()

	Return enum of registered services.

	
services_list()

	Return list of registered services.

	
class django_directed.models.model_factory.PolytreeService(config)

	Returns the actual Graph, Edge, and Node models.

	Parameters:

	config (GraphConfig) –

	
edge()

	Returns the actual Edge model.

	
graph()

	Returns the actual Graph model.

	
node()

	Returns the actual Node model.

	
django_directed.models.model_factory.create_arborescence_service(config)

	Creates a new ArborescenceService instance.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.model_factory.create_cyclic_service(config)

	Creates a new CyclicService instance.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.model_factory.create_dag_service(config)

	Creates a new DAGService instance.

	Parameters:

	config (GraphConfig) –

	
django_directed.models.model_factory.create_polytree_service(config)

	Creates a new PolytreeService instance.

	Parameters:

	config (GraphConfig) –

query_utils.py

Functions for transforming RawQuerySet or other outputs of django-directed to alternate formats.

	
django_directed.query_utils.check_field_list(obj)

	Verifies that obj is a list of strings.

Used with model_to_dict to ensure that the field_list argument is valid.

	
django_directed.query_utils.edges_from_nodes_queryset(nodes_queryset)

	Given an Edge Model and a QuerySet or RawQuerySet of nodes, returns a queryset of the associated edges.

	
django_directed.query_utils.get_field_value(instance, field, date_strf=None)

	Extracts the value of a field from a model instance.

Used with model_to_dict to extract the value of a field from a model instance.

	
django_directed.query_utils.get_instance_characteristics(instance)

	Returns a tuple of the node & edge model classes and the instance_type for the provided instance.

	
django_directed.query_utils.get_queryset_characteristics(queryset)

	Returns a tuple of the node & edge model classes and the queryset type for the provided queryset.

	
django_directed.query_utils.model_to_dict(instance, field_list, date_strf=None)

	Returns a dictionary of {field_name: field_value} for a given model instance.

e.g.: model_to_dict(myqueryset.first(), fields=[“id”,])
For DateTimeFields, a formatting string can be provided
Adapted from: https://ziwon.github.io/post/using_custom_model_to_dict_in_django/

	
django_directed.query_utils.nodes_from_edges_queryset(edges_queryset)

	Given a Node Model and a QuerySet or RawQuerySet of edges, returns a queryset of the associated nodes.

queryset_methods.py

QuerySet methods for the django_directed app.

signals.py

Signals for django_directed.

validators.py

Validators for the django_directed app.

views.py

Views for the django_directed app.

urls.py

Views for the django_directed app.

Contributor Guide

Thank you for your interest in improving this project.
This project is open-source under the MIT license [https://opensource.org/licenses/MIT] and
welcomes contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

	Source Code [https://github.com/jacklinke/django-directed]

	Documentation [https://django-directed.readthedocs.io/]

	Issue Tracker [https://github.com/jacklinke/django-directed/issues]

	Code of Conduct

How to report a bug

Report bugs on the Issue Tracker [https://github.com/jacklinke/django-directed/issues].

When filing an issue, make sure to answer these questions:

	Which operating system and Python version are you using?

	Which version of this project are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?

The best way to get your bug fixed is to provide a test case,
and/or steps to reproduce the issue.

How to request a feature

Request features on the Issue Tracker [https://github.com/jacklinke/django-directed/issues].

How to set up your development environment

You need Python 3.9+ and the following tools:

	Poetry [https://python-poetry.org/]

	Nox [https://nox.thea.codes/]

	nox-poetry [https://nox-poetry.readthedocs.io/]

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session,
or the command-line interface:

$ poetry run python
$ poetry run django-directed

How to test the project

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session.
For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory,
and are written using the pytest [https://pytest.readthedocs.io/] testing framework.

How to submit changes

Open a pull request [https://github.com/jacklinke/django-directed/pulls] to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

	The Nox test suite must pass without errors and warnings.

	Include unit tests. This project maintains 100% code coverage.

	If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by running the following command:

$ nox --session=pre-commit -- install

It is recommended to open an issue before starting work on anything.
This will allow a chance to talk it over with the owners and validate your approach.

Extending Functionality

Beyond making modifications directly within your project (e.g. inheriting and extending the provided models & managers), there are two ways of extending django-directed for use in additional projects or for community use.

Custom model factories

You can create new django-directed graph types with your own graph factories, which can be used directly within your project or in an installable django package for reuse.

Create a new factory

Start by creating new factory functions for the graph, edge, and node. Like any other graph in django-directed, the GraphConfig object is passed into each function, and is used for customizing functionality of the returned model classes.

from django.db import models

from django_directed.components import AbstractGraph, AbstractEdge, AbstractNode

def new_type_graph_factory(config):
 """
 Type: Subclassed Abstract Model
 Abstract methods of the Graph base model are implemented.
 """

 class NewTypeGraph(AbstractGraph):
 some_graph_field = models.IntegerField()

 class Meta:
 abstract = True

 return NewTypeGraph()

def new_type_edge_factory(config):
 """
 Type: Subclassed Abstract Model
 Abstract methods of the Edge base model are implemented.
 """

 class NewTypeEdge(AbstractEdge):
 some_edge_field = models.IntegerField()

 class Meta:
 abstract = True

 return NewTypeEdge()

def new_type_node_factory(config):
 """
 Type: Subclassed Abstract Model
 Abstract methods of the Node base model are implemented.
 """

 class NewTypeNode(AbstractNode):
 some_node_field = models.IntegerField()

 class Meta:
 abstract = True

 return NewTypeNode()

Create the service

The service makes it possible to register the new factory within django-directed.

class NewTypeService:
 """Returns the actual Graph, Edge, and Node models"""

 def __init__(self, config):
 self._instance = None
 self._config = config

 def graph(self):
 return new_type_graph_factory(config=self._config)

 def edge(self):
 return new_type_edge_factory(config=self._config)

 def node(self):
 return new_type_node_factory(config=self._config)

def create_new_type_service(config):
 return NewTypeService(config)

Register your new graph service

Now that the factory and service for our new graph type has been built, we can register the service in our django project and make use of the resulting models.

factory.register("NEW_TYPE", create_new_type_service)

As usual, within your app’s models.py, instantiate the actual model instances.

Create NewType factory instance
new_type = factory.create("NEW_TYPE", config=my_custom_config)

Create model instances
MyNewTypeGraph = new_type.graph()
MyNewTypeEdge = new_type.edge()
MyNewTypeNode = new_type.node()

Pluggy Plugins

Throughout django-directed, pluggy [https://pluggy.readthedocs.io/en/stable/] hooks have been added to

Combined approach

Plugin Hooks

django-directed plugins use pluggy [https://pluggy.readthedocs.io/en/stable/] plugin hooks to customize behavior.

Each plugin can implement one or more hooks using the @hookimpl decorator against a function matching one of the hooks documented on this page.

When you implement a plugin hook, your implementation can accept any or all of the parameters that are documented below as parameters for that hook.

Work In Progress

Signals

About django-directed

This page is not a necessary read for working with the graphs in django-directed, but gives context about the goals and direction of the project, resources for further reading, etc.

Background

This project is the successor of another django package of mine, django-postgresql-dag [https://pypi.org/project/django-postgresql-dag/], which itself was forked and heavily modified from django-dag [https://pypi.org/project/django-dag/] and django-dag-postgresql [https://pypi.org/project/django-dag-postgresql/].

When I started building django-postgresql-dag, I was rather new to a lot of concepts in both graph theory and database queries. As a result, I felt that I backed myself into corners in some ways with that earlier package. I developed django-postgresql-dag to serve as the underlying structure of an application that modeled real-world infrastructure as a directed acyclic graph, but I soon found that there were other graph-related things I wanted to be able to do that were not DAG-specific. Additionally, using CTE’s in django has been somewhat democratized with the django-cte package and other changes over the years, and it might be feasible to port at least a portion of the graph functionality to database backends other than Postgres (though this is not a focus of the initial iteration of the project).

Some design decisions

	A reasonable amount of flexibility - The predecessor for this package was limited (in name and in some implementation aspects) solely to working with Directed Acyclic Graphs in Postgresql. I often find, though, that I need other types of directed graphs. This package should still do one thing well - working with directed graphs - but I’ve opened the scope a bit.

	DRY - There are a lot of commonalities between all types of directed graphs, so we should be able to model graphs of different types with a common API, extending when necessary to perform specialized tasks that do not apply to all graphs.

	Prioritize querying over writing - For my typical purposes, quickly adding large graphs to the database is an uncommon task. Instead, in most graph applications I am either slowly adding a node here and there (comments, categories, etc), or I am adding large graphs in an asynchronous manner (uploading and building the graph of an entire physical infrastructure model from a CSV file). In either case, the speed at which the graph is written is of much less consequence than the ability to query the resulting graph quickly.

	Include tools for modifying and reconfiguring graphs - move or copy subgraphs, insert and delete nodes, and pre-processing (calculating graph hashes or copying a subgraph with a function applied), etc.

	Optimize for sparse graphs - Most of the graph structures I find myself building and working with are sparse. There are generally few connections from each node to another. Said another way, the typical degree of the nodes is small (often no more than 5 or so). This seems pretty common for many real-world models such as physical infrastructure, as well as many common web & software related graph uses such as threaded comments, automation processes, and version control systems. If you are trying to model large, highly-connected graphs, this might not be the right package for you.

Scope & Goals

Directed graphs in general can solve or model an incredible number of real-world or web-related problems and concepts. This package should be complete enough to perform a majority of tasks needed for working with an assortment of directed graphs in django applications, but it should also be flexible and extensible enough to allow for customization and novel approaches to problems in practical graph application.

Types of Directed Graphs

The scope of this package includes working with a variety of directed graphs. This includes eventually supporting functionality for each of these types of directed graphs:

	Directed graphs aka DiGraphs

	Directed cyclic graph [https://en.wikipedia.org/wiki/Cyclic_graph]

	Directed acyclic graph (DAG) [https://en.wikipedia.org/wiki/Directed_acyclic_graph]

	Polytree [https://en.wikipedia.org/wiki/Polytree] (aka directed tree, oriented tree, or singly connected network) - DAGs whose underlying undirected graph is a tree

	Arborescence [https://en.wikipedia.org/wiki/Arborescence_(graph_theory)] (or out-tree or rooted tree) (single-rooted polytree)

Other types of graphs to consider supporting (in expected order of complexity):

	Subclasses of Arborescence

	Directed binary tree [https://en.wikipedia.org/wiki/Binary_tree]

	Directed quadtree [https://en.wikipedia.org/wiki/Quadtree]

	Directed octree [https://en.wikipedia.org/wiki/Octree]

	Binary Search Trees (BST) [https://en.wikipedia.org/wiki/Binary_search_tree]

	Multigraph [https://en.wikipedia.org/wiki/Multigraph] - Graphs where the same pair of nodes may be connected by more than one edge.

	This might be further constrained in a cyclic graph to limit edges between two nodes to no more than two, with one edge in each direction.

	Hypergraph [https://en.wikipedia.org/wiki/Hypergraph] - Graphs where edges can join more than just two nodes.

For further details on building, querying, manipulating, and exporting graphs, please Read the Docs [https://django-directed.readthedocs.io/en/latest/]

Example Use-Cases of django-directed

Graphs can be used to model an incredibly large range of ideas, physical systems, concepts, web-components, etc. Here is a very incomplete list of some of the ways you might use django-directed, along with the underlying structure that might be best to represent them.

	Use-Cases

	Potential Data Structure

	Threaded discussion comments

	Arborescence

	Social follows” (which users are following which)”

	Directed cyclic graph

	Model of resource flow in gas/electrical/water/sewer distribution systems

	Arborescence

	The underlying structure to business process automation (e.g. tools like Airflow)

	Directed cyclic graph or DAG

	Hierarchical bill of materials for a product

	Polytree or Arborescence

	Network mapping (Internet device map, map of linked pages in a website, modeling roadways, modeling airline/train paths, etc)

	Directed cyclic graph

	Modeling dependencies in software applications

	DAG

	Scheduling tasks for project management

	Directed cyclic graph or DAG

	Fault-tree analysis in industrial systems

	Polytree

	Version control systems

	DAG

	Which academic papers are cited by later papers

	DAG

	Dependencies in educational plans (which pieces of knowledge or classes must preceed others as a student progresses toward a goal?)

	Arborescence

	Modeling supply chains from initial resource (mining, forestry, etc) to manufacturer to retailer to consumer market

	DAG or Polytree

	Family trees and other genealogical models

	DAG

	Hierarchical file/folder structures

	Arborescence

	Mind maps

	DAG

	TRIE structures

	Arborescence

	Customer journey maps

	DAG

	Storing information about phone calls, emails, or other interactions between people

	Directed cyclic graph or DAG

Essentially, just about anything involving causal relationships, hierarchies, or dependencies can be modeled with a directed graph. This package may be useful if you need to persist that information for use with django applications.

Further reading and resources

These resources are fantastic for learning about working with graphs in databases and related topics. They are listed in no particular order, and I do not have any affiliation with the authors, publishers, or bookstores.

Books

	Joe Celko’s trees and hierarchies in SQL for smarties [B&N [https://www.barnesandnoble.com/w/joe-celkos-trees-and-hierarchies-in-sql-for-smarties-joe-celko/1100697038?ean=9780123877567], Amazon [https://www.amazon.com/Hierarchies-Smarties-Kaufmann-Management-Systems/dp/0123877334/]]

	Effective SQL: 61 Specific Ways to Write Better SQL (Chapter 10) [B&N [https://www.barnesandnoble.com/w/effective-sql-john-viescas/1124176119?ean=9780134578897], Amazon [https://www.amazon.com/Effective-SQL-Specific-Software-Development/dp/0134578899/]]

	Algorithms for Decision Making (not yet released for print, but available to read at the book’s website [https://algorithmsbook.com/]) [MIT Press [https://mitpress.mit.edu/books/algorithms-decision-making]]

Blog posts, slide shows, and articles

	A Model to Represent Directed Acyclic Graphs (DAG) on SQL Databases [https://www.codeproject.com/Articles/22824/A-Model-to-Represent-Directed-Acyclic-Graphs-DAG-o]

	Graph Algorithms in a Database: Recursive CTEs and Topological Sort with Postgres [https://www.fusionbox.com/blog/detail/graph-algorithms-in-a-database-recursive-ctes-and-topological-sort-with-postgres/620/]

	Postgres: A Graph Database (by Greg Spiegelberg at Pivotal) [https://postgresconf.org/system/events/document/000/001/522/Postrgres_Graph_DB.pdf]

Project Roadmap

Work In Progress

Long-term Features

	[] Admin functionality

	[] Visualize graphs

	[] Edit graphs

	[] Delete edge

	[] Delete node

	[] Add node

	[] Add edge

	[] Copy graph/subgraph

	[] Move subgraph

Credits

Development Lead

	Jack Linke jack@watervize.com

Contributors

None yet. Why not be the first?

Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our
community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience

	Focusing on what is best not just for us as individuals, but for the overall
community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or advances of
any kind

	Trolling, insulting or derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email address,
without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
jacklinke@gmail.com.
All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the
reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of
actions.

Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the
community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org],
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.

Community Impact Guidelines were inspired by
Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

License

MIT License

Copyright © 2023 Jack Linke

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 django_directed	

 	
 	
 django_directed.admin	

 	
 	
 django_directed.apps	

 	
 	
 django_directed.context_managers	

 	
 	
 django_directed.fields	

 	
 	
 django_directed.forms	

 	
 	
 django_directed.manager_methods	

 	
 	
 django_directed.model_methods	

 	
 	
 django_directed.models.abstract_base_graph_models	

 	
 	
 django_directed.models.abstract_graph_models	

 	
 	
 django_directed.models.model_factory	

 	
 	
 django_directed.query_utils	

 	
 	
 django_directed.queryset_methods	

 	
 	
 django_directed.signals	

 	
 	
 django_directed.urls	

 	
 	
 django_directed.validators	

 	
 	
 django_directed.views	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S

A

 	
 	
 add_child()

 	built-in function

 	
 add_children()

 	built-in function

 	
 add_edge()

 	built-in function

 	
 add_parent()

 	built-in function

 	
 add_parents()

 	built-in function

 	
 all_path_edges()

 	built-in function

 	
 all_paths()

 	built-in function

 	
 	
 ancestor_count()

 	built-in function

 	
 ancestor_edges()

 	built-in function

 	
 ancestors()

 	built-in function

 	
 ancestors_and_self()

 	built-in function

 	arborescence_edge_factory() (in module django_directed.models.abstract_graph_models)

 	arborescence_graph_factory() (in module django_directed.models.abstract_graph_models)

 	arborescence_node_factory() (in module django_directed.models.abstract_graph_models)

 	ArborescenceService (class in django_directed.models.model_factory)

B

 	
 	base_edge() (in module django_directed.models.abstract_base_graph_models)

 	base_graph() (in module django_directed.models.abstract_base_graph_models)

 	base_node() (in module django_directed.models.abstract_base_graph_models)

 	BaseEdge (class in django_directed.models.abstract_base_graph_models)

 	BaseGraph (class in django_directed.models.abstract_base_graph_models)

 	BaseNode (class in django_directed.models.abstract_base_graph_models)

 	
 built-in function

 	add_child()

 	add_children()

 	add_edge()

 	add_parent()

 	add_parents()

 	all_path_edges()

 	all_paths()

 	ancestor_count()

 	ancestor_edges()

 	ancestors()

 	ancestors_and_self()

 	clan()

 	clan_count()

 	clan_edges()

 	connected_graph()

 	connected_graph_node_count()

 	descendant_count()

 	descendant_edges()

 	descendants()

 	descendants_and_self()

 	distance()

 	edge_count()

 	from_node_queryset()

 	graph_hash()

 	graphs()

 	has_connection()

 	insert_node()

 	is_ancestor_of()

 	is_descendant_of()

 	is_island()

 	is_leaf()

 	is_partner_of()

 	is_root()

 	is_sibling_of()

 	islands()

 	leaves()

 	node_count()

 	node_depth()

 	partner_count()

 	partners()

 	partners_and_self()

 	path_exists_from()

 	path_exists_to()

 	path_is_valid()

 	remove_all_children()

 	remove_all_parents()

 	remove_child()

 	remove_children()

 	remove_parent()

 	remove_parents()

 	roots()

 	self_and_ancestors()

 	self_and_descendants()

 	self_and_partners()

 	self_and_siblings()

 	shortest_path()

 	shortest_path_edges()

 	sibling_count()

 	siblings()

 	siblings_and_self()

 	sorted()

C

 	
 	check_field_list() (in module django_directed.query_utils)

 	
 clan()

 	built-in function

 	
 clan_count()

 	built-in function

 	
 clan_edges()

 	built-in function

 	
 connected_graph()

 	built-in function

 	
 connected_graph_node_count()

 	built-in function

 	
 	create_arborescence_service() (in module django_directed.models.model_factory)

 	create_cyclic_service() (in module django_directed.models.model_factory)

 	create_dag_service() (in module django_directed.models.model_factory)

 	create_polytree_service() (in module django_directed.models.model_factory)

 	CurrentGraphFKField (class in django_directed.fields)

 	cyclic_edge_factory() (in module django_directed.models.abstract_graph_models)

 	cyclic_graph_factory() (in module django_directed.models.abstract_graph_models)

 	cyclic_node_factory() (in module django_directed.models.abstract_graph_models)

 	CyclicService (class in django_directed.models.model_factory)

D

 	
 	dag_edge_factory() (in module django_directed.models.abstract_graph_models)

 	dag_graph_factory() (in module django_directed.models.abstract_graph_models)

 	dag_node_factory() (in module django_directed.models.abstract_graph_models)

 	DAGService (class in django_directed.models.model_factory)

 	deconstruct() (django_directed.fields.CurrentGraphFKField method)

 	
 descendant_count()

 	built-in function

 	
 descendant_edges()

 	built-in function

 	
 descendants()

 	built-in function

 	
 descendants_and_self()

 	built-in function

 	DirectedServiceFactory (class in django_directed.models.model_factory)

 	
 distance()

 	built-in function

 	
 django_directed

 	module

 	
 django_directed.admin

 	module

 	
 django_directed.apps

 	module

 	
 django_directed.context_managers

 	module

 	
 django_directed.fields

 	module

 	
 	
 django_directed.forms

 	module

 	
 django_directed.manager_methods

 	module

 	
 django_directed.model_methods

 	module

 	
 django_directed.models.abstract_base_graph_models

 	module

 	
 django_directed.models.abstract_graph_models

 	module

 	
 django_directed.models.model_factory

 	module

 	
 django_directed.query_utils

 	module

 	
 django_directed.queryset_methods

 	module

 	
 django_directed.signals

 	module

 	
 django_directed.urls

 	module

 	
 django_directed.validators

 	module

 	
 django_directed.views

 	module

 	DjangoDirectedConfig (class in django_directed.apps)

E

 	
 	edge() (django_directed.models.model_factory.ArborescenceService method)

 	(django_directed.models.model_factory.CyclicService method)

 	(django_directed.models.model_factory.DAGService method)

 	(django_directed.models.model_factory.PolytreeService method)

 	
 	
 edge_count()

 	built-in function

 	edges_from_nodes_queryset() (in module django_directed.query_utils)

F

 	
 	
 from_node_queryset()

 	built-in function

G

 	
 	get() (django_directed.models.model_factory.DirectedServiceFactory method)

 	get_current_graph_instance() (in module django_directed.context_managers)

 	get_field_value() (in module django_directed.query_utils)

 	get_graph_aware_manager() (in module django_directed.models.abstract_base_graph_models)

 	get_graph_aware_queryset() (in module django_directed.models.abstract_base_graph_models)

 	get_instance_characteristics() (in module django_directed.query_utils)

 	get_model_class() (in module django_directed.models.abstract_base_graph_models)

 	get_queryset_characteristics() (in module django_directed.query_utils)

 	
 	graph() (django_directed.models.model_factory.ArborescenceService method)

 	(django_directed.models.model_factory.CyclicService method)

 	(django_directed.models.model_factory.DAGService method)

 	(django_directed.models.model_factory.PolytreeService method)

 	
 graph_hash()

 	built-in function

 	graph_scope() (in module django_directed.context_managers)

 	
 graphs()

 	built-in function

H

 	
 	
 has_connection()

 	built-in function

I

 	
 	
 insert_node()

 	built-in function

 	
 is_ancestor_of()

 	built-in function

 	
 is_descendant_of()

 	built-in function

 	
 is_island()

 	built-in function

 	
 is_leaf()

 	built-in function

 	
 	
 is_partner_of()

 	built-in function

 	
 is_root()

 	built-in function

 	
 is_sibling_of()

 	built-in function

 	
 islands()

 	built-in function

L

 	
 	
 leaves()

 	built-in function

M

 	
 	model_to_dict() (in module django_directed.query_utils)

 	
 module

 	django_directed

 	django_directed.admin

 	django_directed.apps

 	django_directed.context_managers

 	django_directed.fields

 	django_directed.forms

 	django_directed.manager_methods

 	django_directed.model_methods

 	django_directed.models.abstract_base_graph_models

 	django_directed.models.abstract_graph_models

 	django_directed.models.model_factory

 	django_directed.query_utils

 	django_directed.queryset_methods

 	django_directed.signals

 	django_directed.urls

 	django_directed.validators

 	django_directed.views

N

 	
 	node() (django_directed.models.model_factory.ArborescenceService method)

 	(django_directed.models.model_factory.CyclicService method)

 	(django_directed.models.model_factory.DAGService method)

 	(django_directed.models.model_factory.PolytreeService method)

 	
 	
 node_count()

 	built-in function

 	
 node_depth()

 	built-in function

 	nodes_from_edges_queryset() (in module django_directed.query_utils)

P

 	
 	
 partner_count()

 	built-in function

 	
 partners()

 	built-in function

 	
 partners_and_self()

 	built-in function

 	
 path_exists_from()

 	built-in function

 	
 	
 path_exists_to()

 	built-in function

 	
 path_is_valid()

 	built-in function

 	polytree_edge_factory() (in module django_directed.models.abstract_graph_models)

 	polytree_graph_factory() (in module django_directed.models.abstract_graph_models)

 	polytree_node_factory() (in module django_directed.models.abstract_graph_models)

 	PolytreeService (class in django_directed.models.model_factory)

 	pre_save() (django_directed.fields.CurrentGraphFKField method)

R

 	
 	register() (django_directed.models.model_factory.DirectedServiceFactory method)

 	
 remove_all_children()

 	built-in function

 	
 remove_all_parents()

 	built-in function

 	
 remove_child()

 	built-in function

 	
 	
 remove_children()

 	built-in function

 	
 remove_parent()

 	built-in function

 	
 remove_parents()

 	built-in function

 	
 roots()

 	built-in function

S

 	
 	
 self_and_ancestors()

 	built-in function

 	
 self_and_descendants()

 	built-in function

 	
 self_and_partners()

 	built-in function

 	
 self_and_siblings()

 	built-in function

 	services_enum() (django_directed.models.model_factory.DirectedServiceFactory method)

 	services_list() (django_directed.models.model_factory.DirectedServiceFactory method)

 	
 shortest_path()

 	built-in function

 	
 	
 shortest_path_edges()

 	built-in function

 	
 sibling_count()

 	built-in function

 	
 siblings()

 	built-in function

 	
 siblings_and_self()

 	built-in function

 	
 sorted()

 	built-in function

 _static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 django-directed

 		
 django-directed Readme

 		
 Fundamentals

 		
 Quickstart

 		
 Install django-directed

 		
 Create the concrete models

 		
 Migrations

 		
 Build a couple graphs using our DAG models

 		
 Resulting model data

 		
 Graph visualization

 		
 Find the shortest path between two nodes

 		
 Example apps

 		
 Why not use a graph database instead?

 		
 Installation

 		
 Basic

 		
 External packages and plugins

 		
 Terminology & Definitions

 		
 Node

 		
 Edge

 		
 Root

 		
 Roots

 		
 Leaf / Leaves

 		
 Orphan

 		
 Parent / Parents

 		
 Child / Children

 		
 Ancestors

 		
 Descendants

 		
 Clan

 		
 Siblings

 		
 Partners

 		
 Distance

 		
 Node Depth

 		
 Concepts

 		
 Building Graphs

 		
 Configuration

 		
 Models

 		
 Model Instantiation

 		
 Model Migrations

 		
 Querying Graphs

 		
 Manipulating Graphs

 		
 Exporting Graphs

 		
 Graph

 		
 Manager/QuerySet Methods

 		
 Methods used for building/manipulating

 		
 Methods returning a QuerySet of Nodes

 		
 Methods returning a QuerySet of Edges

 		
 Methods returning a Boolean

 		
 Methods returning other values

 		
 Model Methods

 		
 Methods used for building/manipulating an instance

 		
 Methods returning a QuerySet of Nodes

 		
 Methods returning a QuerySet of Edges

 		
 Methods returning a Boolean

 		
 Methods returning other values

 		
 Node

 		
 Manager/QuerySet Methods

 		
 Methods used for building/manipulating

 		
 Methods returning a QuerySet of Nodes

 		
 Methods returning a QuerySet of Edges

 		
 Methods returning a Boolean

 		
 Methods returning other values

 		
 Model Methods

 		
 Methods used for building/manipulating an instance

 		
 Methods returning a QuerySet of Nodes

 		
 Methods returning a QuerySet of Edges

 		
 Methods returning a Boolean

 		
 Methods returning other values

 		
 Edge

 		
 Manager/QuerySet Methods

 		
 Methods used for building/manipulating

 		
 Methods returning a QuerySet of Nodes

 		
 Methods returning a QuerySet of Edges

 		
 Methods returning a Boolean

 		
 Methods returning other values

 		
 Model Methods

 		
 Methods used for building/manipulating an instance

 		
 Methods returning a QuerySet of Nodes

 		
 Methods returning a QuerySet of Edges

 		
 Methods returning a Boolean

 		
 Methods returning other values

 		
 Reference

 		
 django_directed

 		
 admin.py

 		
 apps.py

 		
 DjangoDirectedConfig

 		
 config.py

 		
 context_managers.py

 		
 get_current_graph_instance()

 		
 graph_scope()

 		
 fields.py

 		
 CurrentGraphFKField

 		
 forms.py

 		
 manager_methods.py

 		
 model_methods.py

 		
 models/abstract_base_graph_models.py

 		
 BaseEdge

 		
 BaseGraph

 		
 BaseNode

 		
 base_edge()

 		
 base_graph()

 		
 base_node()

 		
 get_graph_aware_manager()

 		
 get_graph_aware_queryset()

 		
 get_model_class()

 		
 models/abstract_graph_models.py

 		
 arborescence_edge_factory()

 		
 arborescence_graph_factory()

 		
 arborescence_node_factory()

 		
 cyclic_edge_factory()

 		
 cyclic_graph_factory()

 		
 cyclic_node_factory()

 		
 dag_edge_factory()

 		
 dag_graph_factory()

 		
 dag_node_factory()

 		
 polytree_edge_factory()

 		
 polytree_graph_factory()

 		
 polytree_node_factory()

 		
 models/model_factory.py

 		
 ArborescenceService

 		
 CyclicService

 		
 DAGService

 		
 DirectedServiceFactory

 		
 PolytreeService

 		
 create_arborescence_service()

 		
 create_cyclic_service()

 		
 create_dag_service()

 		
 create_polytree_service()

 		
 query_utils.py

 		
 check_field_list()

 		
 edges_from_nodes_queryset()

 		
 get_field_value()

 		
 get_instance_characteristics()

 		
 get_queryset_characteristics()

 		
 model_to_dict()

 		
 nodes_from_edges_queryset()

 		
 queryset_methods.py

 		
 signals.py

 		
 validators.py

 		
 views.py

 		
 urls.py

 		
 Contributor Guide

 		
 How to report a bug

 		
 How to request a feature

 		
 How to set up your development environment

 		
 How to test the project

 		
 How to submit changes

 		
 Extending Functionality

 		
 Custom model factories

 		
 Create a new factory

 		
 Create the service

 		
 Register your new graph service

 		
 Pluggy Plugins

 		
 Combined approach

 		
 Plugin Hooks

 		
 Signals

 		
 About django-directed

 		
 Background

 		
 Some design decisions

 		
 Scope & Goals

 		
 Types of Directed Graphs

 		
 Example Use-Cases of django-directed

 		
 Further reading and resources

 		
 Books

 		
 Blog posts, slide shows, and articles

 		
 Project Roadmap

 		
 Long-term Features

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Enforcement Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Enforcement Guidelines

 		
 1. Correction

 		
 2. Warning

 		
 3. Temporary Ban

 		
 4. Permanent Ban

 		
 Attribution

 		
 License

_static/plus.png

