
django-directed

Jack Linke

Jan 09, 2024

USER GUIDE

1 Fundamentals 3

2 Quickstart 5
2.1 Install django-directed . 5
2.2 Create the concrete models . 5
2.3 Migrations . 6
2.4 Build a couple graphs using our DAG models . 6

Python Module Index 47

Index 49

i

ii

django-directed

Tools for building, querying, manipulating, and exporting directed graphs with django.

Documentation can be found at https://django-directed.readthedocs.io/en/latest/

Caution: This project is very much a Work In Progress, and is not production-ready. Once it is in a more complete
state, it will be moved to the github Watervize organization for long-term development and maintenance.

USER GUIDE 1

https://pypi.org/project/django-directed/
https://pypi.org/project/django-directed/
https://pypi.org/project/django-directed/
https://django-directed.readthedocs.io/
https://github.com/jacklinke/django-directed/actions?workflow=Tests
https://app.codecov.io/gh/jacklinke/django-directed
https://github.com/pre-commit/pre-commit
https://en.wikipedia.org/wiki/Directed_graph

django-directed

2 USER GUIDE

CHAPTER

ONE

FUNDAMENTALS

Graphs in django-directed are constructed with three models (or potentially more in case of extended features).

• Graph: Represents a connected graph of nodes and edges. It makes it easy to associate metadata with a particular
graph and to run commands and queries limited to a subset of all the Edges and Nodes in the database.

• Edge: Connects Nodes to one another within a particular Graph instance.

• Node: A node can belong to more than one Graph. This allows us to represent multi-dimensional or multi-layered
graphs.

django-directed includes model factories for building various types of directed graphs. As an example, imagine a
project in which you display family trees and also provide a searchable interface for research papers about family trees,
where papers can be linked to previous papers that they cite. Both of these concepts can be represented by a Directed
Acyclic Graph (DAG), and within your project you could create a set of DAG models for the family tree app and another
set of DAG models for the academic papers app.

3

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph

django-directed

4 Chapter 1. Fundamentals

CHAPTER

TWO

QUICKSTART

Assuming you have already started a django project and an app named myapp

2.1 Install django-directed

pip install django-directed

2.2 Create the concrete models

Using the DAG factory, create a set of concrete Graph, Edge, and Node models for your project. Perform the following
steps in your app’s models.py

Build a configuration object that will be passed into the factory. Here, we are using the simplest configuration which
specifies the graph type (default options include ‘CYCLIC’, ‘DAG’, ‘POLYTREE’, ‘ARBORESCENCE’) and the model
names (with appname.ModelName). We fall back to the default values for all other configuration options.

from django_directed.config import GraphConfig

my_config = GraphConfig(
graph_type="DAG",
graph_model_name="myapp.DAGGraph",
edge_model_name="myapp.DAGEdge",
node_model_name="myapp.DAGNode",

)

Create the concrete models from a model factory service. In this example, we are adding some fields as an example of
what you might do in your own application.

from django.db import models
from django_directed.models.model_factory import factory

Create DAG factory instance
dag = factory.create(config=my_config)

Create concrete models
class DAGGraph(dag.graph()):

(continues on next page)

5

django-directed

(continued from previous page)

metadata = models.JSONField(default=str, blank=True)

class DAGEdge(dag.edge()):
name = models.CharField(max_length=101, blank=True)
weight = models.SmallIntegerField(default=1)

def save(self, *args, **kwargs):
self.name = f"{self.parent.name} -to- {self.child.name}"
super().save(*args, **kwargs)

class DAGNode(dag.node()):
name = models.CharField(max_length=50)
weight = models.SmallIntegerField(default=1)

Note: The model names here (DAGGraph, etc) are for example only. You are welcome to use whatever names you
like, but the model names should match the names provided in the configuration.

2.3 Migrations

As usual when working with models in django, we need to make migrations and then run them.

python manage.py makemigrations
python manage.py migrate

2.4 Build a couple graphs using our DAG models

Tip: We are using the graph_context_manager here, which is provided in django-directed for convenience. If you
decide not to use this context manager, you need to provide the graph instance when creating or querying with Nodes
and Edges.

from django_directed.context_managers import graph_scope

from myapp.models import DAGGraph, DAGEdge, DAGNode

Create a graph instance
first_graph = DAGGraph.objects.create()
Create a second graph instance, which will share nodes with first_graph
another_graph = DAGGraph.objects.create()

with graph_scope(first_graph):

Create several nodes (not yet connected)
(continues on next page)

6 Chapter 2. Quickstart

django-directed

(continued from previous page)

root = DAGNode.objects.create(name="root")

a1 = DAGNode.objects.create(name="a1")
a2 = DAGNode.objects.create(name="a2")
a3 = DAGNode.objects.create(name="a3")

b1 = DAGNode.objects.create(name="b1")
b2 = DAGNode.objects.create(name="b2")
b3 = DAGNode.objects.create(name="b3")
b4 = DAGNode.objects.create(name="b4")

c1 = DAGNode.objects.create(name="c1")
c2 = DAGNode.objects.create(name="c2")

Connect nodes with edges
root.add_child(a1)
root.add_child(a2)

You can add from either side of the relationship
a3.add_parent(root)

b1.add_parent(a1)
a1.add_child(b2)
a2.add_child(b2)
a3.add_child(b3)
a3.add_child(b4)

b3.add_child(c2)
b3.add_child(c1)
b4.add_child(c2)

with graph_scope(another_graph):

Connect nodes with edges
c1 = DAGNode.objects.get(name="c1")
c2 = DAGNode.objects.get(name="c2")

c1.add_child(c2)

2.4.1 django-directed

[][license]

Tools for building, querying, manipulating, and exporting directed graphs with django.

Documentation can be found at https://django-directed.readthedocs.io/en/latest/

2.4. Build a couple graphs using our DAG models 7

https://pypi.org/project/django-directed/
https://pypi.org/project/django-directed/
https://pypi.org/project/django-directed/
https://django-directed.readthedocs.io/
https://github.com/jacklinke/django-directed/actions?workflow=Tests
https://app.codecov.io/gh/jacklinke/django-directed
https://github.com/pre-commit/pre-commit
https://en.wikipedia.org/wiki/Directed_graph

django-directed

Caution: This project is very much a Work In Progress, and is not production-ready. Once it is in a more complete
state, it will be moved to the github Watervize organization for long-term development and maintenance.

Fundamentals

Graphs in django-directed are constructed with three models (or potentially more in case of extended features).

• Graph: Represents a connected graph of nodes and edges. It makes it easy to associate metadata with a particular
graph and to run commands and queries limited to a subset of all the Edges and Nodes in the database.

• Edge: Connects Nodes to one another within a particular Graph instance.

• Node: A node can belong to more than one Graph. This allows us to represent multi-dimensional or multi-layered
graphs.

django-directed includes model factories for building various types of directed graphs. As an example, imagine a
project in which you display family trees and also provide a searchable interface for research papers about family trees,
where papers can be linked to previous papers that they cite. Both of these concepts can be represented by a Directed
Acyclic Graph (DAG), and within your project you could create a set of DAG models for the family tree app and another
set of DAG models for the academic papers app.

Quickstart

Assuming you have already started a django project and an app named myapp

Install django-directed

pip install django-directed

Create the concrete models

Using the DAG factory, create a set of concrete Graph, Edge, and Node models for your project. Perform the following
steps in your app’s models.py

Build a configuration object that will be passed into the factory. Here, we are using the simplest configuration which
specifies the graph type (default options include ‘CYCLIC’, ‘DAG’, ‘POLYTREE’, ‘ARBORESCENCE’) and the model
names (with appname.ModelName). We fall back to the default values for all other configuration options.

from django_directed.config import GraphConfig

my_config = GraphConfig(
graph_type="DAG",
graph_model_name="myapp.DAGGraph",
edge_model_name="myapp.DAGEdge",
node_model_name="myapp.DAGNode",

)

Create the concrete models from a model factory service. In this example, we are adding some fields as an example of
what you might do in your own application.

8 Chapter 2. Quickstart

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph

django-directed

from django.db import models
from django_directed.models.model_factory import factory

Create DAG factory instance
dag = factory.create(config=my_config)

Create concrete models
class DAGGraph(dag.graph()):

metadata = models.JSONField(default=str, blank=True)

class DAGEdge(dag.edge()):
name = models.CharField(max_length=101, blank=True)
weight = models.SmallIntegerField(default=1)

def save(self, *args, **kwargs):
self.name = f"{self.parent.name} -to- {self.child.name}"
super().save(*args, **kwargs)

class DAGNode(dag.node()):
name = models.CharField(max_length=50)
weight = models.SmallIntegerField(default=1)

Note: The model names here (DAGGraph, etc) are for example only. You are welcome to use whatever names you
like, but the model names should match the names provided in the configuration.

Migrations

As usual when working with models in django, we need to make migrations and then run them.

python manage.py makemigrations
python manage.py migrate

Build a couple graphs using our DAG models

Tip: We are using the graph_context_manager here, which is provided in django-directed for convenience. If you
decide not to use this context manager, you need to provide the graph instance when creating or querying with Nodes
and Edges.

from django_directed.context_managers import graph_scope

from myapp.models import DAGGraph, DAGEdge, DAGNode

Create a graph instance
(continues on next page)

2.4. Build a couple graphs using our DAG models 9

django-directed

(continued from previous page)

first_graph = DAGGraph.objects.create()
Create a second graph instance, which will share nodes with first_graph
another_graph = DAGGraph.objects.create()

with graph_scope(first_graph):

Create several nodes (not yet connected)
root = DAGNode.objects.create(name="root")

a1 = DAGNode.objects.create(name="a1")
a2 = DAGNode.objects.create(name="a2")
a3 = DAGNode.objects.create(name="a3")

b1 = DAGNode.objects.create(name="b1")
b2 = DAGNode.objects.create(name="b2")
b3 = DAGNode.objects.create(name="b3")
b4 = DAGNode.objects.create(name="b4")

c1 = DAGNode.objects.create(name="c1")
c2 = DAGNode.objects.create(name="c2")

Connect nodes with edges
root.add_child(a1)
root.add_child(a2)

You can add from either side of the relationship
a3.add_parent(root)

b1.add_parent(a1)
a1.add_child(b2)
a2.add_child(b2)
a3.add_child(b3)
a3.add_child(b4)

b3.add_child(c2)
b3.add_child(c1)
b4.add_child(c2)

with graph_scope(another_graph):

Connect nodes with edges
c1 = DAGNode.objects.get(name="c1")
c2 = DAGNode.objects.get(name="c2")

c1.add_child(c2)

10 Chapter 2. Quickstart

django-directed

Resulting model data

Here is the resulting data in each model (ignoring the custom fields added in the concrete model definitions).

myapp.DAGGraph

id

1
2

myapp.DAGNode

id | name | graph
-----+------+------
1 | root | 1
2 | a1 | 1
3 | a2 | 1
4 | a3 | 1
5 | b1 | 1
6 | b2 | 1
7 | b3 | 1
8 | b4 | 1
9 | c1 | 1
10 | c2 | 1

myapp.DAGEdge

id | parent_id | child_id | name | graph
----+-----------+----------+---------+------
1 | 1 | 2 | root a1 | 1
2 | 1 | 3 | root a2 | 1
3 | 1 | 4 | root a3 | 1
4 | 2 | 5 | a1 b1 | 1
5 | 2 | 6 | a1 b2 | 1
6 | 3 | 6 | a2 b2 | 1
7 | 4 | 7 | a3 b3 | 1
8 | 4 | 8 | a3 b4 | 1
9 | 7 | 10 | b3 c2 | 1
10 | 7 | 9 | b3 c1 | 1
11 | 8 | 10 | b4 c2 | 1
12 | 9 | 10 | c1 c2 | 2

2.4. Build a couple graphs using our DAG models 11

django-directed

Graph visualization

Note: In the visualized graph below, both of the green nodes (c1) refer to the same Node instance, which is associated
with two different graph instances. Likewise, both blue nodes (c2) refer to the same Node instance.

Note: The mermaid.js diagrams require different markup for GitHub markdown compared to display within ReadThe-
Docs. Both versions are included here, but one will likely appear as code depending on where you are viewing this
file.

Graph for display on GitHub

graph TD;
root((root));
a1((a1));
a2((a2));
a3((a3));
b1((b1));
b2((b2));
b3((b3));
b4((b4));
c1((c1));
c2((c2));
c1X((c1));
c2X((c2));

root-->a1;
root-->a2;
root-->a3;
a1-->b1;
a1-->b2;
a2-->b2;
a3-->b3;
a3-->b4;
b3-->c1;
b3-->c2;
b4-->c2;

c1X-->c2X;

style c1 fill:#48A127,stroke:#333,stroke-width:4px;
style c1X fill:#48A127,stroke:#333,stroke-width:4px;
style c2 fill:#279BA1,stroke:#333,stroke-width:4px;
style c2X fill:#279BA1,stroke:#333,stroke-width:4px;

linkStyle default fill:none,stroke:gray

12 Chapter 2. Quickstart

django-directed

Graph for display on ReadTheDocs

Find the shortest path between two nodes

First, let us try to get the shortest path from c1 and c2 on first_graph, where no path exists:

with graph_scope(first_graph):
c1 = DAGNode.objects.get(name="c1")
c2 = DAGNode.objects.get(name="c2")

print(c1.shortest_path(c2))

Output: django_directed.models.NodeNotReachableError

Next, we will perform the same query on another_graph, which does have a path from c1 to c2 through a single
Edge. The value returned is a QuerySet of the Nodes in the path.

with graph_scope(another_graph):
c1 = DAGNode.objects.get(name="c1")
c2 = DAGNode.objects.get(name="c2")

print(c1.shortest_path(c2))

Output: <QuerySet [<NetworkNode: c1>, <NetworkNode: c2>]>

For additional methods of querying, see the API docs for Graph, Edge, and Node.

Example apps

Note: These are in-progress, and not ready for actual use.

A series of example apps demonstrating vaious aspects and techniques of using django-directed.

• Airports - An app demonstrating one method of working with multidimensional graphs to model airports with
a common set of nodes, and edges for each of the connecting airlines.

• Electrical Grids - Demonstrate graphs of neighborhood electrical connections and meters.

• Family Trees - Demonstrates building family trees for multiple mythological families.

• Forums - Forums and threaded comments.

• NetworkX Graphs - Demonstration of using NetworkX alongside django-directed.

See the Example Apps folder.

2.4. Build a couple graphs using our DAG models 13

https://django-directed.readthedocs.io/en/latest/api/graph.html
https://django-directed.readthedocs.io/en/latest/api/edge.html
https://django-directed.readthedocs.io/en/latest/api/node.html
https://github.com/jacklinke/django-directed/tree/main/tests/example/airports
https://github.com/jacklinke/django-directed/tree/main/tests/example/electrical_grids
https://github.com/jacklinke/django-directed/tree/main/tests/example/family_trees
https://github.com/jacklinke/django-directed/tree/main/tests/example/forums
https://github.com/jacklinke/django-directed/tree/main/tests/example/networkx_graphs
https://github.com/jacklinke/django-directed/tree/main/tests/example

django-directed

Why not use a graph database instead?

• Compatibility - Graph databases don’t play very nicely with Django and the Django ORM. There are 3rd party
packages to shoehorn in the required functionality, but django is designed for relational databases.

• Simplicity - If most of the work you are doing needs a relational database, mixing an additional entirely different
kind of database into the project might not be ideal.

• Tradeoffs - Graph databases are not a panacea. They bring their own set of pros and cons. Maybe a graph
database is ideal for your project. But maybe you’ll do just as well using django-directed. I encourage you to
read up on the benefits graph databases bring, the issues they solve, and also the areas where they do not perform
as well as a relational database.

2.4.2 Installation

Basic

django-directed can be installed with pip

pip install django-directed

In future iterations of this project, expect to see the option to install ‘extras’ for access to additional features and
capabilities.

External packages and plugins

2.4.3 Terminology and Definitions

Learning to use graphs can be challenging because some concepts have multiple equivalent or similar terms and def-
initions. For instance, the words ‘node’ and ‘vertex’ typically mean the same thing, but some industries or fields may
prefer one to the other.

To help clarify what is meant throughout this project, we define the following terms and definitions. We make heavy
use of familial terms, which can help with mentally visualizing the concepts.

This document does is not intended as a course in general graph theory. A graph in the context of this project is made
up of nodes which are connected by edges. Edges typically link two nodes asymmetrically in all of the directed graphs
within django-directed.

Node

Here, A is a node. Another equivalent name for node that you may sometimes hear is vertex. While they are inter-
changeable, we will use the term node (or nodes for plural) exclusively within this project for consistency.

14 Chapter 2. Quickstart

django-directed

Edge

Here, e is an edge in the graph between nodes A and B. Edges connect nodes, and are directed (denoted here with an
arrowhead). Edges are also called lines, links, arcs, or arrows. For consistency, this project will always use the term
edge (or edges for plural).

Root

Here, Node A is the root of the graph. It has an in-degree (number of edges coming ‘in’) of 0.

Roots

Some types of graphs may have multiple roots. Here, Nodes A and B are roots of the graph. Again, if the in-degree is
0, the node is a root.

Leaf / Leaves

Here, Nodes D and e are leaves in the graph. They both have an out-degree (number of edges ‘out’ of the node) of 0.

Orphan

In a given Graph, an orphan is a node with no parents nor children. Orphans have an in-degree of 0 and and out-degree
of 0. Here, node E is an orphan. There are no edges connecting it to any other node.

(Note, there is no equivalent for edges. Every edge connects two [or in special cases, more] nodes.)

Parent / Parents

The parents for a given node x, if any exist, are those nodes which have a directed edge ‘in’ to node x. In graph theory,
this may be refered to as a direct predecessor.

Here, node A is a parent of node B, and node B is a parent of node C. Depending on the type of graph, nodes may have
zero, one, or multiple parents.

We also refer to parent edges, which are the directed edges themselves which point to the node. In this example, edge
e1 is a parent edge of node B, and edge e2 is a parent edge of node C.

Child / Children

The children for a given node x, if any exist, are those nodes which have a directed edge ‘out’ from node x. In graph
theory, this may be refered to as a direct successor.

Here, node B is a child of node A, and node C is a child of node B. Depending on the type of graph, nodes may have
zero, one, or multiple children.

We also refer to children edges, which are the directed edges themselves which point from the node. In this example,
edge e1 is a child edge of node A, and edge e2 is a child edge of node B.

2.4. Build a couple graphs using our DAG models 15

django-directed

Ancestors

All nodes in connected paths in a rootward direction. In graph theory, this may be refered to as predecessors.

In this example, the ancestors for node I are nodes A, C, E, and F.

Descendants

All nodes in connected paths in a leafward direction. In graph theory, this may be refered to as successors.

In this example, the descendants for node C are nodes D, F, G, H, and I.

Clan

The clan of a node includes all ancestor nodes, the node itself, and all descendant nodes. In graph theory, this can be
refered to as the maximal paths through a given node.

In this example, the clan for node F includes nodes A, C, E, H, and I.

Siblings

All nodes that share a parent with this node, excluding the node itself.

In this example, the siblings of node C are nodes B, and E, because they all have node A in common as a parent.

Partners

All nodes that share a child with this node, excluding the node itself.

In this example, the partners of node C are nodes B, and E, because nodes B and C share node D as a child, and nodes C
and E share node F as a child.

Distance

The shortest number of hops from one node to a target node. The distance between node C and node H is 2. This is
because the path from C to F to H involves 2 edges.

There is another path from C to H through nodes D and G, but that path is longer (3 edges), and when we refer to distance
in this project, we always mean the smallest number of hops.

Node Depth

The distance of the node from furthest root in the graph. Because this can be a bit challenging to visualize, a few
examples are provided below.

Because node A is the highest (and only) root in the following graph, its node depth is 0.

Using the same graph as before, consider the depth of node H. There is only a single root (node A) in this graph, and
the distance between node A and node H is 3. So the node depth of node H is 3.

Finally, we will look at a more complicated example with multiple roots at different levels. Here we want the node
depth of node F.

16 Chapter 2. Quickstart

django-directed

While both nodes A and D are roots in this graph (they have in-degree of 0), node A has a greater distance from node F,
so we determine the depth of node F from the viewpoint of node A. It takes 3 hops to reach node F from node A, so the
node depth of node F is 3.

2.4.4 Concepts

Internally, django-directed uses a combination of factories and abstract models, which makes possible:

• Composition of graph model sets with limited repetition of code

• Registering base model types for use with other project and in django-directed-admin

• Passing a standardized configuration object to the factory to change model functionality

Within a Django project utilizing django-directed the graph, edges, and nodes are represented as distinct concrete
models, and multiple types of graphs can be built within the same project. These three work together to provide a
consolidated API for working with graphs.

• a Graph model (extended from BaseGraph and then AbstractGraph)

• an Edge model (extended from BaseEdge and then AbstractEdge)

• a Node model (extended from BaseNode and then AbstractNode)

The connected graph is defined by the Edges associated with a Graph instance. This does mean an additional join on
the Gaph table, but for typical use-cases the ratio of Graph instances to those of Nodes and Edges is tiny.

2.4.5 Building Graphs

Building graphs in django-directed starts with configuring the type of graph you want to use, writing the models, and
then creating and running migrations.

Configuration

Models

Model Instantiation

Model Migrations

2.4.6 Querying Graphs

Work In Progress

2.4.7 Manipulating Graphs

Work In Progress

2.4. Build a couple graphs using our DAG models 17

django-directed

2.4.8 Exporting Graphs

Work In Progress

2.4.9 Graph

WORK IN PROGRESS

Manager/QuerySet Methods

For future consideration:

• clone()

Methods used for building/manipulating

For future consideration:

• add_node() add node to graph, optionally providing a list of parent nodes

• remove_nodes(nodes) removes nodes from the graph

• add_edge() adds connections or paths between nodes in graphs

• remove_edges(edges) removes connection or paths between nodes in graphs

Methods returning a QuerySet of Nodes

None

Methods returning a QuerySet of Edges

None

Methods returning a Boolean

None

Methods returning other values

node_count()

:return: Number of Nodes in the Graph :rtype: int

edge_count()

:return: Number of Edges in the Graph :rtype: int

graph_hash()

:return: Hash value for the Graph :rtype: TBD

18 Chapter 2. Quickstart

django-directed

Model Methods

Methods used for building/manipulating an instance

None

Methods returning a QuerySet of Nodes

None

Methods returning a QuerySet of Edges

None

Methods returning a Boolean

has_connection(node_from, node_to)
Checks if a connection or path exists between two Node instances, within the current Graph.

:param Node node_from: The starting Node :param Node node_to: The ending Node :return: True if path exists
from node_from to node_to :rtype: bool

For future consideration:

• contains_value() check if a graph instance contains a certain value

Methods returning other values

None

2.4.10 Node

Manager/QuerySet Methods

Methods used for building/manipulating

None

Methods returning a QuerySet of Nodes

roots(node=None)
Returns a QuerySet of all root Nodes (nodes with no parents) in the Node model.

:param Node node: (optional) if specified, returns only the roots for that node :return: Root Nodes :rtype: Query-
Set

2.4. Build a couple graphs using our DAG models 19

django-directed

leaves(node=None)
Returns a QuerySet of all leaf Nodes (nodes with no children) in the Node model.

:param Node node: (optional) if specified, returns only the leaves for that node :return: Leaf Nodes :rtype:
QuerySet

islands()

Returns a QuerySet of all Nodes with no parents or children (degree 0).

:return: Island Nodes :rtype: QuerySet

Methods returning a QuerySet of Edges

None

Methods returning a Boolean

None

Methods returning other values

None

Model Methods

Methods used for building/manipulating an instance

add_child(child)
Provided with a Node instance, attaches that instance as a child to the current Node instance.

:param Node child: The Node to be added as a child :return: The newly created Edge between self and child
:rtype: Edge

add_children(children)
Provided with a QuerySet of Node instances, attaches those instances as children of the current Node instance.

:param QuerySet children: The Nodes to be added as children :return: The newly created Edges between self
and children :rtype: list

add_parent(parent)
Provided with a Node instance, attaches that instance as a parent to the current Node instance.

:param Node parent: The Node to be added as a parent :return: The newly created Edge between self and parent
:rtype: Edge

add_parents(parents)
Provided with a QuerySet of Node instances, attaches those instances as parents of the current Node instance.

:param QuerySet parents: The Nodes to be added as parents :return: The newly created Edges between self and
parents :rtype: list

20 Chapter 2. Quickstart

django-directed

remove_child(child, delete_node=False)
Removes the edge connecting this node to child if a child Node instance is provided. Optionally deletes the child
node as well.

:param Node child: The Node to be removed as a child :return: True if any Nodes were removed, otherwise False
:rtype: bool

remove_children(children)
Provided with a QuerySet of Node instances, removes those instances as children of the current Node instance.

:param QuerySet children: The Nodes to be removed as children :return: True if any Nodes were removed,
otherwise False :rtype: bool

remove_all_children(delete_node=False)
Removes all children of the current Node instance, optionally deleting self as well.

:param QuerySet children: The Nodes to be removed as children :return: True if any Nodes were removed,
otherwise False :rtype: bool

remove_parent(parent, delete_node=False)
Removes the edge connecting this node to parent if a parent Node instance is provided. Optionally deletes the
parent node as well.

:param Node parent: The Node to be removed as a parent :return: True if any Nodes were removed, otherwise
False :rtype: bool

remove_parents(parents)
Provided with a QuerySet of Node instances, removes those instances as parents of the current Node instance.

:param QuerySet parents: The Nodes to be removed as parents :return: True if any Nodes were removed, other-
wise False :rtype: bool

remove_all_parents(delete_node=False)
Removes all parents of the current Node instance, optionally deleting self as well.

:param QuerySet parents: The Nodes to be removed as parents :return: True if any Nodes were removed, other-
wise False :rtype: bool

Methods returning a QuerySet of Nodes

ancestors()

Returns all Nodes in connected paths in a rootward direction.

:return: Nodes :rtype: QuerySet

self_and_ancestors()

Returns all Nodes in connected paths in a rootward direction, prepending self.

:return: Nodes :rtype: QuerySet

ancestors_and_self()

Returns all Nodes in connected paths in a rootward direction, appending self.

:return: Nodes :rtype: QuerySet

descendants()

Returns all Nodes in connected paths in a leafward direction.

:return: Nodes :rtype: QuerySet

2.4. Build a couple graphs using our DAG models 21

django-directed

self_and_descendants()

Returns all Nodes in connected paths in a leafward direction, prepending self.

:return: Nodes :rtype: QuerySet

descendants_and_self()

Returns all Nodes in connected paths in a leafward direction, appending self.

:return: Nodes :rtype: QuerySet

siblings()

Returns all Nodes that share a parent with this Node.

:return: Nodes :rtype: QuerySet

self_and_siblings()

Returns all Nodes that share a parent with this Node, prepending self.

:return: Nodes :rtype: QuerySet

siblings_and_self()

Returns all Nodes that share a parent with this Node, appending self.

:return: Nodes :rtype: QuerySet

partners()

Returns all Nodes that share a child with this Node.

:return: Nodes :rtype: QuerySet

self_and_partners()

Returns all Nodes that share a child with this Node, prepending self.

:return: Nodes :rtype: QuerySet

partners_and_self()

Returns all Nodes that share a child with this Node, appending self.

:return: Nodes :rtype: QuerySet

clan()

Returns a QuerySet with all ancestor Nodes, self, and all descendant Nodes.

:return: Nodes :rtype: QuerySet

connected_graph()

Returns all nodes connected in any way to the current Node instance.

:param Node directional: (optional) if True, path searching operates normally (in leafward direction), if False
search operates in both directions :return: Nodes :rtype: QuerySet

shortest_path(target_node)
Returns the shortest path from self to target Node. Resulting Queryset is sorted leafward, regardless of the relative
position of starting and ending nodes.

:param Node target_node: The target Node for searching :param Node directional: (optional) if True, path search-
ing operates normally (in leafward direction), if False search operates in both directions :return: Nodes :rtype:
QuerySet

22 Chapter 2. Quickstart

django-directed

all_paths(target_node)
Returns all paths from self to target Node. Resulting Queryset is sorted leafward, regardless of the relative
position of starting and ending nodes.

:param Node target_node: The target Node for searching :param Node directional: (optional) if True, path search-
ing operates normally (in leafward direction), if False search operates in both directions :return: Nodes :rtype:
QuerySet

roots()

Returns a QuerySet of all root Nodes, if any, for the current Node.

:return: Root Nodes :rtype: QuerySet

leaves()

Returns a QuerySet of all leaf Nodes, if any, for the current Node.

:return: Leaf Nodes :rtype: QuerySet

For future consideration:

• immediate_family (parents, self and children)

• piblings (aka: aunts/uncles)

• niblings (aka: nieces/nephews)

• cousins

Methods returning a QuerySet of Edges

ancestor_edges()

Ancestor Edge instances for the current Node.

:return: Ancestor Edges :rtype: QuerySet

descendant_edges()

Descendant Edge instances for the current Node.

:return: Descendant Edges :rtype: QuerySet

clan_edges()

Clan Edge instances for the current Node.

:return: Clan Edges :rtype: QuerySet

Methods returning a Boolean

is_root()

Returns True if the current Node instance has no parents (Node has an in-degree 0 and out-degree >= 0).

:rtype: bool

is_leaf()

Returns True if the current Node instance has no children (Node has an in-degree >=0 and out-degree 0).

:rtype: bool

2.4. Build a couple graphs using our DAG models 23

django-directed

is_island()

Returns True if the current Node instance has no parents or children (Node has degree 0).

:rtype: bool

path_exists_from(target_node, directional=True)
Checks whether there is a path from the target Node instance to the current Node instance.

:param Node target_node: The node to compare against :param Node directional: (optional) if True, path search-
ing operates normally (in leafward direction), if False search operates in both directions :rtype: bool

path_exists_to(target_node, directional=True)
Checks whether there is a path from the current Node instance to the target Node instance.

:param Node target_node: The node to compare against :param Node directional: (optional) if True, path search-
ing operates normally (in leafward direction), if False search operates in both directions :rtype: bool

is_ancestor_of(target_node, directional=True)
Checks whether the current Node instance is an ancestor of the provided target Node instance.

:param Node target_node: The node to compare against :param Node directional: (optional) if True, path search-
ing operates normally (in leafward direction), if False search operates in both directions :rtype: bool

is_descendant_of(target_node, directional=True)
Checks whether the current Node instance is a descendant of the provided target Node instance.

:param Node target_node: The node to compare against :param Node directional: (optional) if True, path search-
ing operates normally (in leafward direction), if False search operates in both directions :rtype: bool

is_sibling_of(target_node, directional=True)
Checks whether the current Node instance is a sibling of the provided target Node instance (see terminology).

:param Node target_node: The node to compare against :param Node directional: (optional) if True, path search-
ing operates normally (in leafward direction), if False search operates in both directions :rtype: bool

is_partner_of(target_node, directional=True)
Checks whether the current Node instance is a partner of the provided target Node instance (see terminology).

:param Node target_node: The node to compare against :param Node directional: (optional) if True, path search-
ing operates normally (in leafward direction), if False search operates in both directions :rtype: bool

Methods returning other values

ancestor_count()

Returns the total number of ancestor Nodes.

:rtype: int

descendant_count()

Returns the total number of descendant Nodes.

:rtype: int

clan_count()

Returns the total number of clan Nodes.

:rtype: int

24 Chapter 2. Quickstart

django-directed

sibling_count()

Returns the total number of sibling Nodes.

:rtype: int

partner_count()

Returns the total number of partner Nodes.

:rtype: int

connected_graph_node_count()

Returns the count of all ancestors Nodes, self, and all descendant Nodes.

:rtype: int

node_depth()

Returns the depth of this Node instance from furthest root Node.

:rtype: int

distance(target_node)
Returns the shortest hops count to the target Node.

:param Node target_node: The node to compare against :rtype: int

For future consideration:

• descendant_tree()

• ancestor_tree()

graphs()

A Node can be associated with multiple Graphs. This method returns a QuerySet of all Graph instances associated
with the current Node.

:return: Graphs to which this Node belongs :rtype: QuerySet

2.4.11 Edge

Manager/QuerySet Methods

None

Methods used for building/manipulating

None

Methods returning a QuerySet of Nodes

None

2.4. Build a couple graphs using our DAG models 25

django-directed

Methods returning a QuerySet of Edges

ancestor_edges(target_node)
All Edge instances which are ancestors of the target Node.

:param Node target_node: The target Node for searching :return: Ancestor Edges :rtype: QuerySet

descendant_edges(target_node)
All Edge instances descended from the target Node.

:param Node target_node: The target Node for searching :return: Descendant Edges :rtype: QuerySet

clan_edges(target_node)
All Edge instances which are ancestors, self, and descendants of the target Node.

:param Node target_node: The target Node for searching :return: Clan Edges :rtype: QuerySet

shortest_path_edges(node_from, node_to)
All Edge instances for the shortest path from node_from to node_to.

:param Node node_from: The starting Node :param Node node_to: The ending Node :return: Shortest path
Edges :rtype: QuerySet

all_path_edges(node_from, node_to)
All Edge instances for all paths from node_from to node_to.

:param Node node_from: The starting Node :param Node node_to: The ending Node :return: Edges :rtype:
QuerySet

Methods returning a Boolean

path_is_valid()

Verify that the current QuerySet of Edges result in a contiguous path.

:rtype: bool

Methods returning other values

from_node_queryset(nodes)
Returns all Edge instances where a parent and child Node are within the provided QuerySet of Nodes.

:param QuerySet nodes: Nodes of interest :return: Edges with both parent and child Nodes in the provided
QuerySet of Nodes :rtype: QuerySet

sorted()

Sorts the current Edge QuerySet in a rootward direction

:return: Sorted Edges :rtype: QuerySet

26 Chapter 2. Quickstart

django-directed

Model Methods

Methods used for building/manipulating an instance

add_edge(from_node, to_node)
Adds an edge between two Node instances.

:param Node node_from: The starting Node :param Node node_to: The ending Node :return: Newly created
Edge :rtype: Edge

insert_node(node, clone_to_rootside=False, clone_to_leafside=False, pre_save=None, post_save=None)
Insert a Node into an existing Edge instance.

:param Node node: The Node to insert :param bool clone_to_rootside: (optional) Clone properties of the existing
Edge to the new rootside Edge :param bool clone_to_leafside: (optional) Clone properties of the existing Edge
to the new leafside Edge :param callable pre_save: (optional) Helper function to modify before saving :param
callable post_save: (optional) Helper function to modify after saving :return: Newly created rootside Edge (parent
to the inserted node) and leafside Edge (child to the inserted Node) :rtype: tuple

Process:

1. Add a new Edge from the parent Node of the current Edge instance to the provided Node instance, optionally
cloning properties of the existing Edge.

2. Add a new Edge from the provided Node instance to the child Node of the current Edge instance, optionally
cloning properties of the existing Edge.

3. Remove the original Edge instance.

The instance will still exist in memory, though not in database (https://docs.djangoproject.com/en/3.1/ref/models/instances/#refreshing-
objects-from-database). Recommend running the following after conducting the deletion:

del instancename

Cloning will fail if a field has unique=True, so a pre_save function can be passed into this method. Likewise, a post_save
function can be passed in to rebuild relationships. For instance, if you have a name field that is unique and generated
automatically in the model’s save() method, you could pass in a the following pre_save function to clear the name
prior to saving the new Edge instance(s):

def pre_save(new_edge):
new_edge.name = ""
return new_edge

A more complete example, where we have models named DAGEdge & DAGNode, and we want to insert a new Node
(n2) into Edge e1, while copying e1’s field properties (except name) to the newly created rootside Edge instance (n1 to
n2) is shown below.

Original Final

n1 o n1 o
| \
| o n2
| /

n3 o n3 o

2.4. Build a couple graphs using our DAG models 27

django-directed

from myapp.models import DAGEdge, DAGNode

n1 = DAGNode.objects.create(name="n1")
n2 = DAGNode.objects.create(name="n2")
n3 = DAGNode.objects.create(name="n3")

Connect n3 to n1
n1.add_child(n3)

e1 = DAGEdge.objects.last()

function to clear the `name` field, which is autogenerated and must be unique
def pre_save(new_edge):

new_edge.name = ""
return new_edge

DAGEdge.objects.insert_node(e1, n2, clone_to_rootside=True, pre_save=pre_save)

Methods returning a QuerySet of Nodes

None

Methods returning a QuerySet of Edges

None

Methods returning a Boolean

None

Methods returning other values

None

2.4.12 Reference

django_directed

Initialize module.

28 Chapter 2. Quickstart

django-directed

admin.py

Admin for the django_directed app.

apps.py

App configuration for the django_directed app.

class django_directed.apps.DjangoDirectedConfig(app_name, app_module)

config.py

context_managers.py

Context managers for the django_directed app.

django_directed.context_managers.get_current_graph_instance(graph_fullname)
Returns the graph if it exists in the local thread.

django_directed.context_managers.graph_scope(graph)
Context manager for graphs.

Used to set and cleanup Graph instance. If nested, saves outer context and resets it at conclusion of scope.

Parameters
graph (BaseGraph) –

fields.py

Custom model fields for Django Directed.

class django_directed.fields.CurrentGraphFKField(*args, **kwargs)
A ForeignKey field that defaults to the current Graph instance.

deconstruct()

Deconstructs the field.

pre_save(model_instance, add)
Sets the value of the field on save.

forms.py

Forms for django_directed.

2.4. Build a couple graphs using our DAG models 29

django-directed

manager_methods.py

Manager methods for the django_directed app.

model_methods.py

Model methods for django_directed.

models/abstract_base_graph_models.py

Abstract Base Graph Models for Django Directed.

class django_directed.models.abstract_base_graph_models.BaseEdge(*args, **kwargs)
Base Edge Model lets us verify that a given model instance derives from BaseEdge.

class django_directed.models.abstract_base_graph_models.BaseGraph(*args, **kwargs)
Base Graph Model lets us verify that a given model instance derives from BaseGraph.

class django_directed.models.abstract_base_graph_models.BaseNode(*args, **kwargs)
Base Node Model lets us verify that a given model instance derives from BaseNode.

django_directed.models.abstract_base_graph_models.base_edge(config)
Creates “Abstract Edge Model”.

Parameters
config (GraphConfig) –

django_directed.models.abstract_base_graph_models.base_graph(config)
Creates “Abstract Graph Model”.

Parameters
config (GraphConfig) –

django_directed.models.abstract_base_graph_models.base_node(config)
Creates “Abstract Node Model”.

Parameters
config (GraphConfig) –

django_directed.models.abstract_base_graph_models.get_graph_aware_manager(config)
Creates a manager that is aware of the current graph instance.

Parameters
config (GraphConfig) –

django_directed.models.abstract_base_graph_models.get_graph_aware_queryset(config)
Creates a queryset that is aware of the current graph instance.

Parameters
config (GraphConfig) –

django_directed.models.abstract_base_graph_models.get_model_class(model_fullname)
Provided with a model fullname (app_name.ModelName), returns the associated model class.

Parameters
model_fullname (str) –

Return type
Model

30 Chapter 2. Quickstart

django-directed

models/abstract_graph_models.py

Abstract models for Django Directed.

django_directed.models.abstract_graph_models.arborescence_edge_factory(config)
Type: Subclassed Abstract Model. Abstract methods of the Edge base model are implemented.

Parameters
config (GraphConfig) –

django_directed.models.abstract_graph_models.arborescence_graph_factory(config)
Type: Subclassed Abstract Model. Abstract methods of the Graph base model are implemented.

Parameters
config (GraphConfig) –

django_directed.models.abstract_graph_models.arborescence_node_factory(config)
Type: Subclassed Abstract Model. Abstract methods of the Node base model are implemented.

Parameters
config (GraphConfig) –

django_directed.models.abstract_graph_models.cyclic_edge_factory(config)
Type: Subclassed Abstract Model. Abstract methods of the Edge base model are implemented.

Parameters
config (GraphConfig) –

django_directed.models.abstract_graph_models.cyclic_graph_factory(config)
Type: Subclassed Abstract Model. Abstract methods of the Graph base model are implemented.

Parameters
config (GraphConfig) –

django_directed.models.abstract_graph_models.cyclic_node_factory(config)
Type: Subclassed Abstract Model. Abstract methods of the Node base model are implemented.

Parameters
config (GraphConfig) –

django_directed.models.abstract_graph_models.dag_edge_factory(config)
Type: Subclassed Abstract Model. Abstract methods of the Edge base model are implemented.

Parameters
config (GraphConfig) –

django_directed.models.abstract_graph_models.dag_graph_factory(config)
Type: Subclassed Abstract Model. Abstract methods of the Graph base model are implemented.

Parameters
config (GraphConfig) –

django_directed.models.abstract_graph_models.dag_node_factory(config)
Type: Subclassed Abstract Model. Abstract methods of the Node base model are implemented.

Parameters
config (GraphConfig) –

django_directed.models.abstract_graph_models.polytree_edge_factory(config)
Type: Subclassed Abstract Model. Abstract methods of the Edge base model are implemented.

2.4. Build a couple graphs using our DAG models 31

django-directed

Parameters
config (GraphConfig) –

django_directed.models.abstract_graph_models.polytree_graph_factory(config)
Type: Subclassed Abstract Model. Abstract methods of the Graph base model are implemented.

Parameters
config (GraphConfig) –

django_directed.models.abstract_graph_models.polytree_node_factory(config)
Type: Subclassed Abstract Model. Abstract methods of the Node base model are implemented.

Parameters
config (GraphConfig) –

models/model_factory.py

Model factory for directed graph models.

class django_directed.models.model_factory.ArborescenceService(config)
Returns the actual Graph, Edge, and Node models.

Parameters
config (GraphConfig) –

edge()

Returns the actual Edge model.

graph()

Returns the actual Graph model.

node()

Returns the actual Node model.

class django_directed.models.model_factory.CyclicService(config)
Returns the actual Graph, Edge, and Node models.

Parameters
config (GraphConfig) –

edge()

Returns the actual Edge model.

graph()

Returns the actual Graph model.

node()

Returns the actual Node model.

class django_directed.models.model_factory.DAGService(config)
Returns the actual Graph, Edge, and Node models.

Parameters
config (GraphConfig) –

edge()

Returns the actual Edge model.

32 Chapter 2. Quickstart

django-directed

graph()

Returns the actual Graph model.

node()

Returns the actual Node model.

class django_directed.models.model_factory.DirectedServiceFactory

Registers django-directed services.

get(config, **kwargs)
Creates and returns a new model factory for directed graph models.

Parameters
config (GraphConfig) –

register(key, builder)
Registers model factory services.

services_enum()

Return enum of registered services.

services_list()

Return list of registered services.

class django_directed.models.model_factory.PolytreeService(config)
Returns the actual Graph, Edge, and Node models.

Parameters
config (GraphConfig) –

edge()

Returns the actual Edge model.

graph()

Returns the actual Graph model.

node()

Returns the actual Node model.

django_directed.models.model_factory.create_arborescence_service(config)
Creates a new ArborescenceService instance.

Parameters
config (GraphConfig) –

django_directed.models.model_factory.create_cyclic_service(config)
Creates a new CyclicService instance.

Parameters
config (GraphConfig) –

django_directed.models.model_factory.create_dag_service(config)
Creates a new DAGService instance.

Parameters
config (GraphConfig) –

2.4. Build a couple graphs using our DAG models 33

django-directed

django_directed.models.model_factory.create_polytree_service(config)
Creates a new PolytreeService instance.

Parameters
config (GraphConfig) –

query_utils.py

Functions for transforming RawQuerySet or other outputs of django-directed to alternate formats.

django_directed.query_utils.check_field_list(obj)
Verifies that obj is a list of strings.

Used with model_to_dict to ensure that the field_list argument is valid.

django_directed.query_utils.edges_from_nodes_queryset(nodes_queryset)
Given an Edge Model and a QuerySet or RawQuerySet of nodes, returns a queryset of the associated edges.

django_directed.query_utils.get_field_value(instance, field, date_strf=None)
Extracts the value of a field from a model instance.

Used with model_to_dict to extract the value of a field from a model instance.

django_directed.query_utils.get_instance_characteristics(instance)
Returns a tuple of the node & edge model classes and the instance_type for the provided instance.

django_directed.query_utils.get_queryset_characteristics(queryset)
Returns a tuple of the node & edge model classes and the queryset type for the provided queryset.

django_directed.query_utils.model_to_dict(instance, field_list, date_strf=None)
Returns a dictionary of {field_name: field_value} for a given model instance.

e.g.: model_to_dict(myqueryset.first(), fields=[“id”,]) For DateTimeFields, a formatting string can be provided
Adapted from: https://ziwon.github.io/post/using_custom_model_to_dict_in_django/

django_directed.query_utils.nodes_from_edges_queryset(edges_queryset)
Given a Node Model and a QuerySet or RawQuerySet of edges, returns a queryset of the associated nodes.

queryset_methods.py

QuerySet methods for the django_directed app.

signals.py

Signals for django_directed.

34 Chapter 2. Quickstart

https://ziwon.github.io/post/using_custom_model_to_dict_in_django/

django-directed

validators.py

Validators for the django_directed app.

views.py

Views for the django_directed app.

urls.py

Views for the django_directed app.

2.4.13 Contributor Guide

Thank you for your interest in improving this project. This project is open-source under the MIT license and welcomes
contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

• Source Code

• Documentation

• Issue Tracker

• Code of Conduct

How to report a bug

Report bugs on the Issue Tracker.

When filing an issue, make sure to answer these questions:

• Which operating system and Python version are you using?

• Which version of this project are you using?

• What did you do?

• What did you expect to see?

• What did you see instead?

The best way to get your bug fixed is to provide a test case, and/or steps to reproduce the issue.

How to request a feature

Request features on the Issue Tracker.

2.4. Build a couple graphs using our DAG models 35

https://opensource.org/licenses/MIT
https://github.com/jacklinke/django-directed
https://django-directed.readthedocs.io/
https://github.com/jacklinke/django-directed/issues
https://github.com/jacklinke/django-directed/issues
https://github.com/jacklinke/django-directed/issues

django-directed

How to set up your development environment

You need Python 3.9+ and the following tools:

• Poetry

• Nox

• nox-poetry

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session, or the command-line interface:

$ poetry run python
$ poetry run django-directed

How to test the project

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session. For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory, and are written using the pytest testing framework.

How to submit changes

Open a pull request to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

• The Nox test suite must pass without errors and warnings.

• Include unit tests. This project maintains 100% code coverage.

• If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by
running the following command:

$ nox --session=pre-commit -- install

It is recommended to open an issue before starting work on anything. This will allow a chance to talk it over with the
owners and validate your approach.

36 Chapter 2. Quickstart

https://python-poetry.org/
https://nox.thea.codes/
https://nox-poetry.readthedocs.io/
https://pytest.readthedocs.io/
https://github.com/jacklinke/django-directed/pulls

django-directed

2.4.14 Extending Functionality

Beyond making modifications directly within your project (e.g. inheriting and extending the provided models & man-
agers), there are two ways of extending django-directed for use in additional projects or for community use.

Custom model factories

You can create new django-directed graph types with your own graph factories, which can be used directly within your
project or in an installable django package for reuse.

Create a new factory

Start by creating new factory functions for the graph, edge, and node. Like any other graph in django-directed, the
GraphConfig object is passed into each function, and is used for customizing functionality of the returned model classes.

from django.db import models

from django_directed.components import AbstractGraph, AbstractEdge, AbstractNode

def new_type_graph_factory(config):
"""
Type: Subclassed Abstract Model
Abstract methods of the Graph base model are implemented.
"""

class NewTypeGraph(AbstractGraph):
some_graph_field = models.IntegerField()

class Meta:
abstract = True

return NewTypeGraph()

def new_type_edge_factory(config):
"""
Type: Subclassed Abstract Model
Abstract methods of the Edge base model are implemented.
"""

class NewTypeEdge(AbstractEdge):
some_edge_field = models.IntegerField()

class Meta:
abstract = True

return NewTypeEdge()

def new_type_node_factory(config):
"""

(continues on next page)

2.4. Build a couple graphs using our DAG models 37

django-directed

(continued from previous page)

Type: Subclassed Abstract Model
Abstract methods of the Node base model are implemented.
"""

class NewTypeNode(AbstractNode):
some_node_field = models.IntegerField()

class Meta:
abstract = True

return NewTypeNode()

Create the service

The service makes it possible to register the new factory within django-directed.

class NewTypeService:
"""Returns the actual Graph, Edge, and Node models"""

def __init__(self, config):
self._instance = None
self._config = config

def graph(self):
return new_type_graph_factory(config=self._config)

def edge(self):
return new_type_edge_factory(config=self._config)

def node(self):
return new_type_node_factory(config=self._config)

def create_new_type_service(config):
return NewTypeService(config)

Register your new graph service

Now that the factory and service for our new graph type has been built, we can register the service in our django project
and make use of the resulting models.

factory.register("NEW_TYPE", create_new_type_service)

As usual, within your app’s models.py, instantiate the actual model instances.

Create NewType factory instance
new_type = factory.create("NEW_TYPE", config=my_custom_config)

Create model instances
MyNewTypeGraph = new_type.graph()

(continues on next page)

38 Chapter 2. Quickstart

django-directed

(continued from previous page)

MyNewTypeEdge = new_type.edge()
MyNewTypeNode = new_type.node()

Pluggy Plugins

Throughout django-directed, pluggy hooks have been added to

Combined approach

2.4.15 Plugin Hooks

django-directed plugins use pluggy plugin hooks to customize behavior.

Each plugin can implement one or more hooks using the @hookimpl decorator against a function matching one of the
hooks documented on this page.

When you implement a plugin hook, your implementation can accept any or all of the parameters that are documented
below as parameters for that hook.

Work In Progress

2.4.16 Signals

2.4.17 About django-directed

This page is not a necessary read for working with the graphs in django-directed, but gives context about the goals and
direction of the project, resources for further reading, etc.

Background

This project is the successor of another django package of mine, django-postgresql-dag, which itself was forked and
heavily modified from django-dag and django-dag-postgresql.

When I started building django-postgresql-dag, I was rather new to a lot of concepts in both graph theory and database
queries. As a result, I felt that I backed myself into corners in some ways with that earlier package. I developed
django-postgresql-dag to serve as the underlying structure of an application that modeled real-world infrastructure as
a directed acyclic graph, but I soon found that there were other graph-related things I wanted to be able to do that were
not DAG-specific. Additionally, using CTE’s in django has been somewhat democratized with the django-cte package
and other changes over the years, and it might be feasible to port at least a portion of the graph functionality to database
backends other than Postgres (though this is not a focus of the initial iteration of the project).

2.4. Build a couple graphs using our DAG models 39

https://pluggy.readthedocs.io/en/stable/
https://pluggy.readthedocs.io/en/stable/
https://pypi.org/project/django-postgresql-dag/
https://pypi.org/project/django-dag/
https://pypi.org/project/django-dag-postgresql/

django-directed

Some design decisions

• A reasonable amount of flexibility - The predecessor for this package was limited (in name and in some im-
plementation aspects) solely to working with Directed Acyclic Graphs in Postgresql. I often find, though, that I
need other types of directed graphs. This package should still do one thing well - working with directed graphs
- but I’ve opened the scope a bit.

• DRY - There are a lot of commonalities between all types of directed graphs, so we should be able to model
graphs of different types with a common API, extending when necessary to perform specialized tasks that do not
apply to all graphs.

• Prioritize querying over writing - For my typical purposes, quickly adding large graphs to the database is an
uncommon task. Instead, in most graph applications I am either slowly adding a node here and there (comments,
categories, etc), or I am adding large graphs in an asynchronous manner (uploading and building the graph of an
entire physical infrastructure model from a CSV file). In either case, the speed at which the graph is written is
of much less consequence than the ability to query the resulting graph quickly.

• Include tools for modifying and reconfiguring graphs - move or copy subgraphs, insert and delete nodes, and
pre-processing (calculating graph hashes or copying a subgraph with a function applied), etc.

• Optimize for sparse graphs - Most of the graph structures I find myself building and working with are sparse.
There are generally few connections from each node to another. Said another way, the typical degree of the
nodes is small (often no more than 5 or so). This seems pretty common for many real-world models such as
physical infrastructure, as well as many common web & software related graph uses such as threaded comments,
automation processes, and version control systems. If you are trying to model large, highly-connected graphs,
this might not be the right package for you.

Scope & Goals

Directed graphs in general can solve or model an incredible number of real-world or web-related problems and concepts.
This package should be complete enough to perform a majority of tasks needed for working with an assortment of
directed graphs in django applications, but it should also be flexible and extensible enough to allow for customization
and novel approaches to problems in practical graph application.

Types of Directed Graphs

The scope of this package includes working with a variety of directed graphs. This includes eventually supporting
functionality for each of these types of directed graphs:

• Directed graphs aka DiGraphs

– Directed cyclic graph

– Directed acyclic graph (DAG)

∗ Polytree (aka directed tree, oriented tree, or singly connected network) - DAGs whose underlying
undirected graph is a tree

· Arborescence (or out-tree or rooted tree) (single-rooted polytree)

Other types of graphs to consider supporting (in expected order of complexity):

• Subclasses of Arborescence

– Directed binary tree

– Directed quadtree

– Directed octree

40 Chapter 2. Quickstart

https://en.wikipedia.org/wiki/Cyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Polytree
https://en.wikipedia.org/wiki/Arborescence_(graph_theory)
https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Quadtree
https://en.wikipedia.org/wiki/Octree

django-directed

• Binary Search Trees (BST)

• Multigraph - Graphs where the same pair of nodes may be connected by more than one edge.

– This might be further constrained in a cyclic graph to limit edges between two nodes to no more than two,
with one edge in each direction.

• Hypergraph - Graphs where edges can join more than just two nodes.

For further details on building, querying, manipulating, and exporting graphs, please Read the Docs

Example Use-Cases of django-directed

Graphs can be used to model an incredibly large range of ideas, physical systems, concepts, web-components, etc. Here
is a very incomplete list of some of the ways you might use django-directed, along with the underlying structure that
might be best to represent them.

Use-Cases Potential Data
Structure

Threaded discussion comments Arborescence
Social follows” (which users are following which)” Directed cyclic

graph
Model of resource flow in gas/electrical/water/sewer distribution systems Arborescence
The underlying structure to business process automation (e.g. tools like Airflow) Directed cyclic

graph or DAG
Hierarchical bill of materials for a product Polytree or Arbores-

cence
Network mapping (Internet device map, map of linked pages in a website, modeling road-
ways, modeling airline/train paths, etc)

Directed cyclic
graph

Modeling dependencies in software applications DAG
Scheduling tasks for project management Directed cyclic

graph or DAG
Fault-tree analysis in industrial systems Polytree
Version control systems DAG
Which academic papers are cited by later papers DAG
Dependencies in educational plans (which pieces of knowledge or classes must preceed oth-
ers as a student progresses toward a goal?)

Arborescence

Modeling supply chains from initial resource (mining, forestry, etc) to manufacturer to re-
tailer to consumer market

DAG or Polytree

Family trees and other genealogical models DAG
Hierarchical file/folder structures Arborescence
Mind maps DAG
TRIE structures Arborescence
Customer journey maps DAG
Storing information about phone calls, emails, or other interactions between people Directed cyclic

graph or DAG

Essentially, just about anything involving causal relationships, hierarchies, or dependencies can be modeled with a
directed graph. This package may be useful if you need to persist that information for use with django applications.

2.4. Build a couple graphs using our DAG models 41

https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Multigraph
https://en.wikipedia.org/wiki/Hypergraph
https://django-directed.readthedocs.io/en/latest/

django-directed

Further reading and resources

These resources are fantastic for learning about working with graphs in databases and related topics. They are listed in
no particular order, and I do not have any affiliation with the authors, publishers, or bookstores.

Books

• Joe Celko’s trees and hierarchies in SQL for smarties [B&N, Amazon]

• Effective SQL: 61 Specific Ways to Write Better SQL (Chapter 10) [B&N, Amazon]

• Algorithms for Decision Making (not yet released for print, but available to read at the book’s website) [MIT
Press]

Blog posts, slide shows, and articles

• A Model to Represent Directed Acyclic Graphs (DAG) on SQL Databases

• Graph Algorithms in a Database: Recursive CTEs and Topological Sort with Postgres

• Postgres: A Graph Database (by Greg Spiegelberg at Pivotal)

2.4.18 Project Roadmap

Work In Progress

Long-term Features

• [] Admin functionality

– [] Visualize graphs

– [] Edit graphs

∗ [] Delete edge

∗ [] Delete node

∗ [] Add node

∗ [] Add edge

∗ [] Copy graph/subgraph

∗ [] Move subgraph

42 Chapter 2. Quickstart

https://www.barnesandnoble.com/w/joe-celkos-trees-and-hierarchies-in-sql-for-smarties-joe-celko/1100697038?ean=9780123877567
https://www.amazon.com/Hierarchies-Smarties-Kaufmann-Management-Systems/dp/0123877334/
https://www.barnesandnoble.com/w/effective-sql-john-viescas/1124176119?ean=9780134578897
https://www.amazon.com/Effective-SQL-Specific-Software-Development/dp/0134578899/
https://algorithmsbook.com/
https://mitpress.mit.edu/books/algorithms-decision-making
https://mitpress.mit.edu/books/algorithms-decision-making
https://www.codeproject.com/Articles/22824/A-Model-to-Represent-Directed-Acyclic-Graphs-DAG-o
https://www.fusionbox.com/blog/detail/graph-algorithms-in-a-database-recursive-ctes-and-topological-sort-with-postgres/620/
https://postgresconf.org/system/events/document/000/001/522/Postrgres_Graph_DB.pdf

django-directed

2.4.19 Credits

Development Lead

• Jack Linke jack@watervize.com

Contributors

None yet. Why not be the first?

2.4.20 Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience
for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, caste,
color, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, without their explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

2.4. Build a couple graphs using our DAG models 43

mailto:jack@watervize.com

django-directed

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take
appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, is-
sues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing
the community in public spaces. Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders re-
sponsible for enforcement at jacklinke@gmail.com. All complaints will be reviewed and investigated promptly and
fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action
they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the
community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation
and an explanation of why the behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, includ-
ing unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes
avoiding interactions in community spaces as well as external channels like social media. Violating these terms may
lead to a temporary or permanent ban.

44 Chapter 2. Quickstart

mailto:jacklinke@gmail.com

django-directed

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a
specified period of time. No public or private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent
ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate
behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.1, available at https://www.
contributor-covenant.org/version/2/1/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq.
Translations are available at https://www.contributor-covenant.org/translations.

2.4.21 License

MIT License

Copyright © 2023 Jack Linke

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View this project on Github.

2.4. Build a couple graphs using our DAG models 45

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations
https://github.com/jacklinke/django-directed

django-directed

46 Chapter 2. Quickstart

PYTHON MODULE INDEX

d
django_directed, 28
django_directed.admin, 29
django_directed.apps, 29
django_directed.context_managers, 29
django_directed.fields, 29
django_directed.forms, 29
django_directed.manager_methods, 30
django_directed.model_methods, 30
django_directed.models.abstract_base_graph_models,

30
django_directed.models.abstract_graph_models,

31
django_directed.models.model_factory, 32
django_directed.query_utils, 34
django_directed.queryset_methods, 34
django_directed.signals, 34
django_directed.urls, 35
django_directed.validators, 35
django_directed.views, 35

47

django-directed

48 Python Module Index

INDEX

A
add_child()

built-in function, 20
add_children()
built-in function, 20

add_edge()
built-in function, 27

add_parent()
built-in function, 20

add_parents()
built-in function, 20

all_path_edges()
built-in function, 26

all_paths()
built-in function, 22

ancestor_count()
built-in function, 24

ancestor_edges()
built-in function, 26

ancestors()
built-in function, 21

ancestors_and_self()
built-in function, 21

arborescence_edge_factory() (in module
django_directed.models.abstract_graph_models),
31

arborescence_graph_factory() (in module
django_directed.models.abstract_graph_models),
31

arborescence_node_factory() (in module
django_directed.models.abstract_graph_models),
31

ArborescenceService (class in
django_directed.models.model_factory),
32

B
base_edge() (in module

django_directed.models.abstract_base_graph_models),
30

base_graph() (in module
django_directed.models.abstract_base_graph_models),

30
base_node() (in module

django_directed.models.abstract_base_graph_models),
30

BaseEdge (class in django_directed.models.abstract_base_graph_models),
30

BaseGraph (class in django_directed.models.abstract_base_graph_models),
30

BaseNode (class in django_directed.models.abstract_base_graph_models),
30

built-in function
add_child(), 20
add_children(), 20
add_edge(), 27
add_parent(), 20
add_parents(), 20
all_path_edges(), 26
all_paths(), 22
ancestor_count(), 24
ancestor_edges(), 26
ancestors(), 21
ancestors_and_self(), 21
clan(), 22
clan_count(), 24
clan_edges(), 26
connected_graph(), 22
connected_graph_node_count(), 25
descendant_count(), 24
descendant_edges(), 26
descendants(), 21
descendants_and_self(), 22
distance(), 25
edge_count(), 18
from_node_queryset(), 26
graph_hash(), 18
graphs(), 25
has_connection(), 19
insert_node(), 27
is_ancestor_of(), 24
is_descendant_of(), 24
is_island(), 23
is_leaf(), 23

49

django-directed

is_partner_of(), 24
is_root(), 23
is_sibling_of(), 24
islands(), 20
leaves(), 19
node_count(), 18
node_depth(), 25
partner_count(), 25
partners(), 22
partners_and_self(), 22
path_exists_from(), 24
path_exists_to(), 24
path_is_valid(), 26
remove_all_children(), 21
remove_all_parents(), 21
remove_child(), 20
remove_children(), 21
remove_parent(), 21
remove_parents(), 21
roots(), 19
self_and_ancestors(), 21
self_and_descendants(), 21
self_and_partners(), 22
self_and_siblings(), 22
shortest_path(), 22
shortest_path_edges(), 26
sibling_count(), 24
siblings(), 22
siblings_and_self(), 22
sorted(), 26

C
check_field_list() (in module

django_directed.query_utils), 34
clan()

built-in function, 22
clan_count()

built-in function, 24
clan_edges()

built-in function, 26
connected_graph()

built-in function, 22
connected_graph_node_count()

built-in function, 25
create_arborescence_service() (in module

django_directed.models.model_factory), 33
create_cyclic_service() (in module

django_directed.models.model_factory),
33

create_dag_service() (in module
django_directed.models.model_factory),
33

create_polytree_service() (in module
django_directed.models.model_factory),

33
CurrentGraphFKField (class in

django_directed.fields), 29
cyclic_edge_factory() (in module

django_directed.models.abstract_graph_models),
31

cyclic_graph_factory() (in module
django_directed.models.abstract_graph_models),
31

cyclic_node_factory() (in module
django_directed.models.abstract_graph_models),
31

CyclicService (class in
django_directed.models.model_factory),
32

D
dag_edge_factory() (in module

django_directed.models.abstract_graph_models),
31

dag_graph_factory() (in module
django_directed.models.abstract_graph_models),
31

dag_node_factory() (in module
django_directed.models.abstract_graph_models),
31

DAGService (class in django_directed.models.model_factory),
32

deconstruct() (django_directed.fields.CurrentGraphFKField
method), 29

descendant_count()
built-in function, 24

descendant_edges()
built-in function, 26

descendants()
built-in function, 21

descendants_and_self()
built-in function, 22

DirectedServiceFactory (class in
django_directed.models.model_factory),
33

distance()
built-in function, 25

django_directed
module, 28

django_directed.admin
module, 29

django_directed.apps
module, 29

django_directed.context_managers
module, 29

django_directed.fields
module, 29

django_directed.forms

50 Index

django-directed

module, 29
django_directed.manager_methods
module, 30

django_directed.model_methods
module, 30

django_directed.models.abstract_base_graph_models
module, 30

django_directed.models.abstract_graph_models
module, 31

django_directed.models.model_factory
module, 32

django_directed.query_utils
module, 34

django_directed.queryset_methods
module, 34

django_directed.signals
module, 34

django_directed.urls
module, 35

django_directed.validators
module, 35

django_directed.views
module, 35

DjangoDirectedConfig (class in
django_directed.apps), 29

E
edge() (django_directed.models.model_factory.ArborescenceService

method), 32
edge() (django_directed.models.model_factory.CyclicService

method), 32
edge() (django_directed.models.model_factory.DAGService

method), 32
edge() (django_directed.models.model_factory.PolytreeService

method), 33
edge_count()
built-in function, 18

edges_from_nodes_queryset() (in module
django_directed.query_utils), 34

F
from_node_queryset()

built-in function, 26

G
get() (django_directed.models.model_factory.DirectedServiceFactory

method), 33
get_current_graph_instance() (in module

django_directed.context_managers), 29
get_field_value() (in module

django_directed.query_utils), 34
get_graph_aware_manager() (in module

django_directed.models.abstract_base_graph_models),
30

get_graph_aware_queryset() (in module
django_directed.models.abstract_base_graph_models),
30

get_instance_characteristics() (in module
django_directed.query_utils), 34

get_model_class() (in module
django_directed.models.abstract_base_graph_models),
30

get_queryset_characteristics() (in module
django_directed.query_utils), 34

graph() (django_directed.models.model_factory.ArborescenceService
method), 32

graph() (django_directed.models.model_factory.CyclicService
method), 32

graph() (django_directed.models.model_factory.DAGService
method), 32

graph() (django_directed.models.model_factory.PolytreeService
method), 33

graph_hash()
built-in function, 18

graph_scope() (in module
django_directed.context_managers), 29

graphs()
built-in function, 25

H
has_connection()
built-in function, 19

I
insert_node()
built-in function, 27

is_ancestor_of()
built-in function, 24

is_descendant_of()
built-in function, 24

is_island()
built-in function, 23

is_leaf()
built-in function, 23

is_partner_of()
built-in function, 24

is_root()
built-in function, 23

is_sibling_of()
built-in function, 24

islands()
built-in function, 20

L
leaves()
built-in function, 19

Index 51

django-directed

M
model_to_dict() (in module

django_directed.query_utils), 34
module

django_directed, 28
django_directed.admin, 29
django_directed.apps, 29
django_directed.context_managers, 29
django_directed.fields, 29
django_directed.forms, 29
django_directed.manager_methods, 30
django_directed.model_methods, 30
django_directed.models.abstract_base_graph_models,

30
django_directed.models.abstract_graph_models,

31
django_directed.models.model_factory, 32
django_directed.query_utils, 34
django_directed.queryset_methods, 34
django_directed.signals, 34
django_directed.urls, 35
django_directed.validators, 35
django_directed.views, 35

N
node() (django_directed.models.model_factory.ArborescenceService

method), 32
node() (django_directed.models.model_factory.CyclicService

method), 32
node() (django_directed.models.model_factory.DAGService

method), 33
node() (django_directed.models.model_factory.PolytreeService

method), 33
node_count()
built-in function, 18

node_depth()
built-in function, 25

nodes_from_edges_queryset() (in module
django_directed.query_utils), 34

P
partner_count()

built-in function, 25
partners()

built-in function, 22
partners_and_self()

built-in function, 22
path_exists_from()

built-in function, 24
path_exists_to()

built-in function, 24
path_is_valid()

built-in function, 26

polytree_edge_factory() (in module
django_directed.models.abstract_graph_models),
31

polytree_graph_factory() (in module
django_directed.models.abstract_graph_models),
32

polytree_node_factory() (in module
django_directed.models.abstract_graph_models),
32

PolytreeService (class in
django_directed.models.model_factory),
33

pre_save() (django_directed.fields.CurrentGraphFKField
method), 29

R
register() (django_directed.models.model_factory.DirectedServiceFactory

method), 33
remove_all_children()
built-in function, 21

remove_all_parents()
built-in function, 21

remove_child()
built-in function, 20

remove_children()
built-in function, 21

remove_parent()
built-in function, 21

remove_parents()
built-in function, 21

roots()
built-in function, 19

S
self_and_ancestors()
built-in function, 21

self_and_descendants()
built-in function, 21

self_and_partners()
built-in function, 22

self_and_siblings()
built-in function, 22

services_enum() (django_directed.models.model_factory.DirectedServiceFactory
method), 33

services_list() (django_directed.models.model_factory.DirectedServiceFactory
method), 33

shortest_path()
built-in function, 22

shortest_path_edges()
built-in function, 26

sibling_count()
built-in function, 24

siblings()
built-in function, 22

52 Index

django-directed

siblings_and_self()
built-in function, 22

sorted()
built-in function, 26

Index 53

	Fundamentals
	Quickstart
	Install django-directed
	Create the concrete models
	Migrations
	Build a couple graphs using our DAG models
	django-directed
	Fundamentals
	Quickstart
	Install django-directed
	Create the concrete models
	Migrations
	Build a couple graphs using our DAG models
	Resulting model data
	myapp.DAGGraph
	myapp.DAGNode
	myapp.DAGEdge

	Graph visualization
	Graph for display on GitHub
	Graph for display on ReadTheDocs

	Find the shortest path between two nodes

	Example apps
	Why not use a graph database instead?

	Installation
	Basic
	External packages and plugins

	Terminology and Definitions
	Node
	Edge
	Root
	Roots
	Leaf / Leaves
	Orphan
	Parent / Parents
	Child / Children
	Ancestors
	Descendants
	Clan
	Siblings
	Partners
	Distance
	Node Depth

	Concepts
	Building Graphs
	Configuration
	Models
	Model Instantiation
	Model Migrations

	Querying Graphs
	Manipulating Graphs
	Exporting Graphs
	Graph
	Manager/QuerySet Methods
	Methods used for building/manipulating
	Methods returning a QuerySet of Nodes
	Methods returning a QuerySet of Edges
	Methods returning a Boolean
	Methods returning other values

	Model Methods
	Methods used for building/manipulating an instance
	Methods returning a QuerySet of Nodes
	Methods returning a QuerySet of Edges
	Methods returning a Boolean
	Methods returning other values

	Node
	Manager/QuerySet Methods
	Methods used for building/manipulating
	Methods returning a QuerySet of Nodes
	Methods returning a QuerySet of Edges
	Methods returning a Boolean
	Methods returning other values

	Model Methods
	Methods used for building/manipulating an instance
	Methods returning a QuerySet of Nodes
	Methods returning a QuerySet of Edges
	Methods returning a Boolean
	Methods returning other values

	Edge
	Manager/QuerySet Methods
	Methods used for building/manipulating
	Methods returning a QuerySet of Nodes
	Methods returning a QuerySet of Edges
	Methods returning a Boolean
	Methods returning other values

	Model Methods
	Methods used for building/manipulating an instance
	Methods returning a QuerySet of Nodes
	Methods returning a QuerySet of Edges
	Methods returning a Boolean
	Methods returning other values

	Reference
	django_directed
	admin.py
	apps.py
	config.py
	context_managers.py
	fields.py
	forms.py
	manager_methods.py
	model_methods.py
	models/abstract_base_graph_models.py
	models/abstract_graph_models.py
	models/model_factory.py
	query_utils.py
	queryset_methods.py
	signals.py
	validators.py
	views.py
	urls.py

	Contributor Guide
	How to report a bug
	How to request a feature
	How to set up your development environment
	How to test the project
	How to submit changes

	Extending Functionality
	Custom model factories
	Create a new factory
	Create the service
	Register your new graph service

	Pluggy Plugins
	Combined approach

	Plugin Hooks
	Signals
	About django-directed
	Background
	Some design decisions
	Scope & Goals
	Types of Directed Graphs
	Example Use-Cases of django-directed
	Further reading and resources
	Books
	Blog posts, slide shows, and articles

	Project Roadmap
	Long-term Features

	Credits
	Development Lead
	Contributors

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	Attribution

	License

	Python Module Index
	Index

